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N ABSTRACT

Time series models with autoregressive, moving average
and mixed autoregressive-moving average correlation struc-
ture and with positive-valued non-normal marginal distribu-
tions are considered. First,a flexible mixed model
GLARMA(p,q) with Gamma marginals is investigated. The
correlation structure for several special cases is derived.
For the first-order autoregressive case, GLAR(l), the
conditional density oqun givegbxn_l is derived. This
leads to the formatio; of a likelihood function and a
numerical approximation to and a simulation study of the
maximum likelihood method of parameter estimation. Multi-
variate extensions of the model are considered briefly.

Second, three methods for generating first-order
moving average sequences with Exponential marginals are
examined. These generalize the EMA(l) Expunential model.
Negative correlation using antithetic variables is investi-
gated in the moving average models.

A preliminary analysis of wind speed data obtained over
a 15 year period in the Gulf of Alaska is presented. A

model with four harmonic deterministic mean multiplying
random innovative factors modeled by a GLAR(l) process is
developed. Correlograms and periodograms are used to deter-

mine the model for the mean and the structure of the

innovation process.
.
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Correlogram 1960 detrended data =-=--==--- 313

Correlogram 1961 detrended data =~--==---= 314

Correlogram 1962 detrended data ~—-=~=-=- 315

Correlogram 1963 detrended data ~===—===- 316

Correlogram 1964 detrended data ~-—====- 317
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]
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ﬁ; IV.D.7 Correlogram of average detrended data --- 324
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I. INTRODUCTION

The classical approach to time series analysis based on
linear, additive models with normally distributed, constant
variance residuals is probably best presented by the work of
Box and Jenkins [Ref. 1]. Although their work is widely ac-
cepted and used, it is not applicable to some important time
series. This is mainly because the Box-~-Jenkins approach is
based on an assumed normal distribution for the series in
guestion. However, the assumption of normality is not appro-
priate when the series is known to be non-negative. Such
series typically involve times between successive events in
event processes, Examples are easy to construct. Times be-
tween arrivals at a hospital emergency room, times between
breakdowns in a tank main drive assembly, and times between
detections of enemy armor vehicles are a sample of series of
this type. Because of the non-negative nature of the series,
the Box-Jenkins distributional assumptions and, hence, the

analysis techniques are inappropriate. There is, of course,

the possibility of data transformations but this is not appro-

priate with very skewed marginal distributions and it is, in
most cases, difficult to ascertain what the transformation
does to the correlation structure of the series.

Gaver and Lewis [Ref. 2] wrote the pioneering paper on

the subject of autoregressive processes with non-normal marginal

distributions. They presented the method for determining the
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distribution of the innovative terms in the basic, linear,
additive, autoregressive equations (first-order stochastic

different equation)

+ e (I.1)

that was required to produce a given marginal distribution
for the {Xn} sequence. They presented results for {Xn} se-
guences with Exponential, Gamma, and mixed Exponential
marginals. They also showed that this problem was the same
as that of determining the class of self-decomposable (Type
L) random variables (Feller, [Ref. 3], Loeve [Ref. 4]) al-
though the connection between the solution to the self-decom-
posable problem and equation (I.l) was not explicit in the
literature.

The Gaver and Lewis paper was followed by otherx papers
which extended these results. Lawrance and Lewis [Ref. 5]
presented a first-order moving average process with Exponential
marginals. Jacobs and Lewis [Ref. 6] propounded a mixed auto-
regressive-moving average of order one, EARMA(l,l), and
Exponential marginals. This was extended to an arbitrary
order EARMA (p,g) process by Lawrance and Lewis [Ref. 7]. A
further refinement of the first-order, Exponential, auto-
regressive process (NEAR(l)) was presented by Lawrance and
Lewis [Ref. 8]. While this contained the previous EAR(1l)
model, it did not suffer from the degeneracy inherent in (I.1).

Jacbos applied these models to closed cyclic queueing networks

20
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(Ref. 9] and Lewis and Shedler applied them to mocdels of
computer processes [Ref. 10].

This paper extends the results of these researchers and
others in three areas. In Chapter 1II a mixed ARMA(p,q) model
with Gamma marginals proposed by Lewis [Ref. 11], the GLARMA(p,q)
model, is examined. The correlation structure is derived for
several values of p and g. Of particular note is the AR(1l)
case (p =1, g = 0), called GLAR(l), where the conditional
density of xn given Xn-l is derived. This leads to the deri-
vation of a likelihood function and a numerical technique to
evaluate and maximize the likelihood function with respect to
the model parameters. This provides a useful technique for
estimating model parameters. Using this numerical technigue
a simulation study of the properties of maximum likelihocd
estimators for the parameters of the model is given.

The correlation structure is derived for other models in
the GLARMA (p,q) family: the first-order moving average, the
second-order autoregressive, the first-order mixed autoregres-

sive~moving average and a bivariate first-order autoregressive

. process. These different models, particularly the bivariate

extension, demonstrate the flexibility of the GLARMA(p,Qq)
model.

In Chapter III the first-order moving average process with
Exponential marginals of Lawrance and Lewis [Ref. 5] is ex-
tended to a two parameter model. This is done by utilizing
the NEAR(l) structure which combines two independent Exponen-

tial random variables into a random variable with Exponential
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? distribution. A fairly complete set of characteristics of
this model are derived. In particular the correlation struc-
ture, the quantity P(Xn+l:>xn), the Laplace transform of

sums of xn's, the Laplace transforms of the distribution of
counts, the (Bartlett) spectrum of counts, and the joint
Laplace-sStieltjes transforms of X, and X, are addressed.
These characteristics are compared to those of other proc-
esses which produce marginally Exponential random variables.
1‘ In Chapter IV the models of Chapter 1II are used in a

8 preliminary data analysis of wind speed data. This repre-
sents the first effort to apply these models to a large, real
world data base. A model for simulating wind data is pre- 1
sented and parameter estimates for the data are derived using

the numerical approximation to the maximum likelihood presented

in Chapter II.

' b
;
!
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II. MODELS WITH GAMMA MARGINALS

A. INTRODUCTION

There have been several schemes suggested for the modeling
of dependent random variables with Gamma marginals. The
Gamma autoregressive process of order one (GAR(l)) by Gaver
and Lewis [Ref. 2], the discrete autoregressive process of
order one (GDAR(1l)) by Jacobs and Lewis [Ref. 12], the Gamma
Beta autoregressive process of order one (GBAR(1l)) by Fishman
(Ref.13] and Lawrance and Lewis [Ref. 14], and the Gamma auto-
regressive process of order one (GLAR(1)) by Lewis [Ref. 10].
There is also an attempt to use multivariate Gammas obtained
by the inverse probability integral transform in a time series
context by chmeiser [Ref. 19].

The GAR(1l) model generates an {Xn} series using the stan-
dard first-order autoregression equation (first-order stochas-

tic difference equation)
X = Dxn-l + e, 0 < o < 1. (IT.A.1)

The innovative factor, € has Laplace-Stieltjes transform

Ak
A+s

Gamma distributions with shape parameter k and scale parameter

of (p+(1-p) and the tXn} random variables have marginal

A. The marginal density function of the {xn} random variable

is
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fxn(x;k,)\) = fx(x;k,?\) = oy X e , (IT.A.2)

A >0, x>0, k> 0.

The model tends to produce runs of decreasing value when inno-
vative term has successive realizations of value zero. The
GAR(l) is in this sense highly degenerate, even though it is

a true linear process. Ad hoc estimates of model parameters
are available which produce the exact p value if the series
is long enough [Ref. 2]. However, maximum likelihood esti-
mates have not been produced. This model is not extendable
to a moving average process.

The GDAR(1l) produces an {xn} sequence using the first-

order autoregressive equation with random coefficients.

where {Vn, n=1,2,...} is an iid sequence of binary random
variables with P(Vn=l) = l-P(Vn=O) = o, {Gn, n=1,2,...:

is an iid Gamma sequence.

This sequence produces runs of constant value when suc-
cessive realizations for Vn produce value 1. When Vn egquals
zero, a new value is selected. Obvicusly, this model has
limited value in general applications and is even more degener-
ate than GAR(l) process.

The GBAR(l) is the most flexible model in that it contains

the GAR(1l) and GLAR(1l) models as special cases. It produces
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an {Xn} seguence using ;

X = BBnX

N + e, (II.A.4)

n+1l

where {Bn, n=1212,...7 is an iid Beta (k~g9,q) sequence. €n

was shown by Lawrance and Lewis to be the sum of a Gamma

variable and the innovation process of the GAR(1l) process
[Ref. 14]. Although flexible in the sense that it contains the
other models, it can not be extended to a moving average proc-
ess., In addition, conditional densities and, hence, maximum
likelihood estimates are not available. This is because the
innovation random variable for the GAR(l) process, while it

can be generated as a random sum of random variables, does not

have a known distribution function.
The most valuable and flexible model seems to be the
GLAR(l) which produces an {Xn} sequence using the stochastic 1

difference equation with random coefficients

X, = B.X i + CG.. (II.A.5) i
where {Xn, n=20,1...}) is a second-order stationary sequence i
¥

of Gamma random variables, {Bn, n=1,2,...: and {Cn, n=1,2,...:

are 1id Beta random variables, and {Gn} is an iid sequence of

Gamma random variables. This model is extendable as an auto-

regressive process of arbitrary order and as a moving average

process of arbitrary order. These two forms can also be combined
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to form a mixed model, the so-called Gamma Lewis autoregressive -
moving average process of orders p and g (GLARMA(p,q)).

This chapter of the thesis examines some of the special
£ cases of the model. One case in particular, the AR(l) form,

is reasonably extensively examined. The correlation struc-

y ture is developed. The conditicnal expectation and density

'} are derived. The latter is used as the basis of a numerical

approximation to the maximum likelihood method of parameter

y( estimation. Directional moments and the probability of Xn+l

being greater than Xn are derived. In a later Chapter of

this thesis, this model is used as a basis for analyzing wind

:?‘ speed data.

, The special case of the moving average of order one is

examined in some detail. The correlation structure is derived

. with some emphasis on exploring the restrictions on the range b

of correlations that are possible. Directional moments and

A an empirical examination of the probability that Xn+l is

} greater than X are examined.

As a demonstration of the flexibility and extendability

-0of the model the mixed model of order one, the autoregressive j

model of order two, and a bivariate model are introduced and

their correlation structures derived.

! B. FIRST-ORDER AUTOREGRESSIVE BETA-GAMMA MODEL , GLAR(1)

1. Introduction

The first-order autoregressive Beta-Gamma model is a

special case of the GLARMA(p,q) model when @ = 0 and p = 1.
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The autoregressive model generates an {Xn} sequence using

X = A X

n n¥n-1 * BnCp (II.B.1.1)

where {xn, n=20,1,...} is a second-order stationary sequence
of random variables with a Gamma(k,l) marginal distribution;
{aA, n-= 1,2,...} is an iid sequence of Beta(k-g,q) random
variables; {Bn, n=1,2,...} is an iid sequence of Beta(g,k-q)
random variables; {Gn, n=20,1,...} is an iid sequence of
Gamma (k,l) random variables; {An}, {Bn}, and {Gn} are inde-
pendent; 0 < g < k.

=G

Choosing X makes the {Xn} sequence stationary.

0 0
The Gamma random variables are parameterized by the shape
parameter and the mean, rather than the scale parameter. This
somewhat unusual parameterization has some advantages in

statistical work since Gamma(k,u) = u gammal(k,l) [Ref. 7].

A Gamma(k,l) random variable has density
fG(x;k,l) = 3 x e , x>0, k>0 (II.B.1.2

This is a special case of the more general density

(

k k kx
. = L
fG(x.k,u) k7 X e

) - ————

where y = 1. Of course, since the scale parameter, shape
parameter and mean are related by the relation u = §,the den-
sity can be specified by any two of the three parameters. The

27




typical parameterization in terms of the scale parameter, 1,

is useful because G(kl,x) + G(kz,A) = G(kl+k2,x). This re-
lationship is not true when the parameterization is through
the shape parameter, k, and the mean, u.

A Beta(m,n) random variable has density

) - _[(m+n) m-1 ., _.n-1
fB(x.m,n) = m X (1-x) ’ (II.B.1.3)

0 < x < 1, m > 0, n > 0.

For the Beta random variable to be properly defined
each of the parameters must be positive. Hence, when q = k,
(II.B.1l.1), as defined above, is no longer appropriate since
each Beta random variable has a parameter that is identically
zero. In this case when g = k it is understood that the {An}
sequence is considered to be identically zero and the {Bn} 4
sequence one. Therefore, II.B.1l.1. becomes simply xn = Gn'
and the {Xn} sequence, like the {Gn} sequence, is iid. A
justification of this generation scheme for a Gamma process
as defined by II.B.l.1 was provided by Lawrance and Lewis
[Ref. 14, pp.24].

In this section the correlation structures of the fxn?
sequence and that of the {xn} and {Gn} sequences are addressed.
Other characteristics of the sequence, such as conditional

expectation of X given Xq-1" directional moments, and

~X_ ) are considered. Of particular note is the deri-

?(xn+l n

vation of the conditional density of X given X _,. This
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leads to the formulation of the likelihood function and a

computer program to generate maximum likelihood estimates

of parameter values. The numerical convergence properties
of the likelihood method are assessed in Section II.E.

2. Correlation Structure

The serial correlation of the {Xn} series is easily

determined by a straightforward calculation. We have

Now X. and Gj are independent if j > i and X and Aj are
independent if j > i. Using these facts along with the iid
nature and independence of the {Bn} and {Gn} sequences yields

the following expression when expectations are taken.

_ 2
E(ann_l) = E(An)E(Xn_l) + E(Bn)E(Gn)E(Xn_l)
- (ktg) . k{k+1) + (& 1.1
k k2 k
2 2
_ k“+k-kg-g+gk _ k“+k-q
K4 K2
Therefore,
covix_,x__,) = %4
n’ “n-1 2

and
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= CORR(X_,X_ .) = %49 - . 0 < q < k. (II.B.2.1)

n’'"n-1

This is consistent with the fact that for q = k, {Xn} is a
sequence of i.i.d. Gamma variates which implies that

CORR(XnX = 0. This correlation is easly extended by an

n-l)
induction argument to yield

= (k=gym
CORR(Xn’Xn+m) ( % ), n>m>20. (II.B.2.2)

The two sequences {Xn} and {Gn} can be viewed as a
bivariate pair (xn'Gn) of Gamma({k,l) random variables.
Therefore, the correlation structure of these sequences may

be of interest. Proceeding as before

Xn = Anxn_l + BnGn
X G = A X G_ + B G2
nn nn-l"n nn
Taking expectations as before
- 2
E(ann) = E(An)E(Xn_l)E(Gn) + E(Bn)E(Gn)
_ k-q... g . k(k+1) - k- kg+
BlX,G) = Tprlolepetm g = g+ S
k2+
E(X G ) = —;79 (II.B.2.3)
Therefore
= <
COV(Xn,Gn) = 5
k
, and
30




CORR(Xn,Gn) . (I1.B.2.4)

]
x1Q

G .

When g = k this is 1 since Xn n

Pursuing the process one more step we determine

CORR(X_,G__;) -

Xn = Aan_l + BnGn,

B G G

X,G 1 Aan-lGn-l + nn n-1

n n-

Taking expectations as before and using II.B.2.3 and the second-

order stationarity of the {Xn} seguence, we get |
E(X,G,_,) = E(AE(X _,G _;) + E(B)E(G)E(E _,)
2 3 2 2 2
= (5:3)(E;ﬂ1)4.3.1.1 = k’+kg-k' g-g~ +gk
k 2 k 3
k k
k3 2
= k+tkg-q_
3
k
Therefore,

_ q(k-g)
cov(x .G _;) = AL (II.B.2.5)

k

and
= g 5;3
CORR(X_,G l) (])( ; ) (II.B.2.6)

I1.B.2.3 through II.B.2.6 can be used in a simple induction

argument to yield the general result

CORR(X_,G,_ ) @ EDT, mo=0,1,...,0, (II.B.2.7)

When j is greater than i, Xi and Gj are independent. Hence,

CORR(X;,G5) = 0, j > i.




. ——— ————— -

3. Conditional Expectation and Conditional Density

The conditional expectation of xn given xn-l =y is

trivially determined from the defining equation and the

moments of the Beta distribution as 1
o = = k_-g i
by E(xnlxn-l y) (Hy + 2. (II.B.3.1)

Recognizing Eiﬂ as the correlation between X and X _; and

I

;gl letting p be that correlation, II.B.3.l1 can be written as ;
g ;
g E(X |X _y=y) = oy + % = py + (1-p). (I1.G.3.2) |
. if
b Thus the regression is linear in y. E
) The conditicnal density of Xn given Xn-l can also be

;( determined. It is easiest to start by deriving the condi-

tional distribution of Xn given Xn-l = y.
e P(X <x[X _;=y) = P(Ay+BG <x) = P(BG <x-Ayy)

Now [Ref. 14] the product of a Beta(g,k-g) random variable and

a Gamma(k,l) random variable is a random variable with density

Gamma(q,%). Hence, if we let Dn be a Gamma(q,%) random

o P B, T TR S I LR TR e e AR T Sao e

e e

P S

variable,

P(Xnix{xn_l=y) = P(D, <x-A_Yy) (II1.B.3.3)

! This can be written as a convolution if one is careful about
the upper limit of integration. Since Dn is Gamma(q,%), it ;

is non-negative. Hence, P(D, <x-A y) is zero if x-A Yy is
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less than zero. Since An is a Beta random variable and,

hence, bounded above by one, x-Any can not be negative if

x > y. However, if y > x, then An must be restricted to lie

in the range (0,3). Taking this restriction into account

and writing the RHS of II.B.3.3 as a convolution

L

PX <x[X _1=v) = fo £, (2)F(x-yz)dz, (II.B.3.4)

1

and

X if x < Y,

{ 1 if x> vy,
Y

where fA(z) is the density of a Beta

I1.B.1.3, and FD is the distribution

(q,%) random variable.

random variable as in

function of a Gamma

-

0Of course, to get the conditional density of xn

given X,.1 = Y, we must take the derivative of II.B.3.4

with respect to x. Recognizing that

the upper limit may

be a function of x and applying Leibneitz's Rule where

appropriate yields

L

£ (x) = [ £,(z)f (x~yz)dy, (IT.B.3.5)
xnixn_l o A D
and
‘ 1 if x>y,
L =
I g if x <y,
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~ where £ (x) is the conditional density of X_ given
xn]xn_l n

Xn—l’ fA(z) is the Beta density, and fD(x-yz) is the Gamma

S el e g ——

Y (q,%) density as in II.B.l1.2. Writing this result in terms

- of the densities involved we have

L g
= I (k) k-g-1 ,__.q9-1 k ooy G-1 -k (x-yz)
fxnlxn_l(X) B jO T(x-q) [ (q) 2 (1-2) F(q)(x Yz) e dy,

with the condition on L, as in II.B.3.5. And finally,

g 1x 0 = I (k) 2}1«.%‘kx
n' “n-1 F'(k=q) [T (q)]
L oy g-1 -1 -1 kyz
x [ 289 (12) T (x-y2) T Y 2ay,  (1I.B.3.6)
0
and

(l\if X >y,

R R e aerr

if x < y.

i b

As a check on the derivation of the conditional density,

PR I R

- the conditional density and conditional expectation were calcu-

lated for values of k and g which produced simple integrands.
One of these cases wa§/k/é/§7/q = 1. Then k-g-1 = 0 and

g-l = 0. 1In these'parameter values II.B.3.6 reduces to i

L
(x) = z2e %% | e?¥23; L =

!
Xni¥n-1 0 P

e if X < vy.

b
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After integration,

(x)

X | X

nl

Since the two express
can insure that this

gral is one.

£ (x)dx =
IO xnlxn-—l

as required. We can

see if it equals % +

2y
-2 .
x[9§— - $] if x>y,
(I1.B.3.7)
-2x
% - ey if x < vy.

ions in II.B.3.7 are non-negative, we

is a density by verifying that its inte-

-2X @ 2y
e 2x.e 1
= - dx + - =]dx
f [y Yy ] [y [ Y y]
1Y 1 2x %Y 1 -2x
= [ dax -=/ e “Tax + [/ - 1) e “Tax
Y 'y Yy Y Yy
1+e-2y__1_+_l__e-2y
2y 2y 2y Y

1,

also take the conditional expectation to

% as required by II.B.3.l1. Thus,

b4 1 e-2x ® -2X ezy 1
= x[= - dx + [ -_— - 2]dx
IO [Y Y ] ly xe [ Yy Y]
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1 -2x e 1 -2x
[ xf x)dx = = [ xdx - =[ xe “dx + [Z=— - =]/ xe “¥dx ’
» o Xnl¥X,_3 Y J y Y, 3
A L A AU U S
2 2 4y 4y 2 4y
) =2y _ e~ %Y
2 4y
‘ _v.l
2 "2
K
1§ as required.

]

Using k = 3 and g 1 produces a density of

- 3y
3x[l(e3y_g__ +-£ﬂ] if x>y,

v 2
. © Y 3y 3y 1
4 =
fxnlxn-l(X) (II.B.3.8) ‘
2 ——2' e bR X Y. »
y 3y !
;

‘ This density is non-negative and integrates to one. It also

produces a conditional expectation of %¥ + % as reguired by

e g

II.B.3.1. These results are also of use in validating the
results obtained from numerical integrations of II.B.3.6 in
estimation applications.

This conditional density can be used to form the joint
! density of Xl,Xz,...,Xn and, hence, the likelihood function
of the data. This subject will be addressed in the following

section.

4. Maximum Likelihood Estimation

Once the conditional density of Xn given Xn-l and the

marginal density of Xl are known, it is possible to evaluate

36

+
4




- eaiaviad My

the joint density of Xl’x2""'xn' Since the first-order
autoregressive process is Markovian, as can be seen directly
from the defining equation II.B.l.l1l, the following equation

is valid:

; f(lexj-l’xj-2""'xi) = f(lexj_l), n>3j>2 (II.B.4.1)

» Applying II.B.4.1 n-1 times to the joint density of xn’xn-l’

] ...,x1 produces

|

b

. ™ 5 _ ‘ 2
E(xpexp_qoeeerx) = Eo(x Ixp VE (xp g lxp o) oo f) (%) £, (%) .

(ITI.B.4.2)

- w
e

oy g

where £ is the joint density of Xn,...,xl; fl is the condi-

is the marginal den-~

e

- tional density of Xj given Xj_l; and f2

sity of the {Xn} sequence.

Viewing the joint density as the likelihood function,

Punepre it Rt

letting L be the likelihood function, and taking natural ;

logarithms of each side of II.B.4.2 produces ,;

n-1
f InL = 1n £,(x) + I In £ (xg,1%5) (II.B.4.3)
: i=1 -

Recall that in Section II.B.3 the conditional density

was determined to be
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L
{ (k) 1k ~kx f Zk-q-l(l_z)q-l(x_yz)q-lekyzdz,

xly) =
q I (k-q) (T (q) ]2 0
‘ 1 if x>y, (II.B.4.4)
L =
l % if x < vy.

For a given set of data the likelihood can be viewed as a

function of the parameters k and g. Let

G(k,q) = 1n f2(X1) + Zzi 1n fl(xi+l{xi) (IT1.B.4.5)
Assume for the moment that a procedure has been established
to evaluate G(k,q) giver k,qg (0 < g < k) and the data. Consider
the problem of constructing a program to determine the values
of k and g which maximize G(k,q). An outline of the program
can be constructed as follows:

1. Read the initial values for k and q.

Read the data.

2. Determine a direction of search. Use the following

difference equations to approximate derivatives.

%E M G(k+Ak,§L - Gk,q) (I1.B.4.6)
%a clkq G(k,gfagé - G(k,q) (11.B.4.7)
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G(k+ak,g) - G(k.q) G(k,g+Ag) - G(k,qg)

Let Dki = N and Dg; = Aq
for the ith iteration. If we define VGi = (ggi), then VGi
i

approximates the gradient of G at the current k,qg values.
For i = 1, let the direction of search, dl, be VGi. For

i > 1, define the direction of search, dk’ to be

dk = VGi + Bk-l dk-l' (I1.B.4.8)

vczvci :
where Bk-l is —F the ratio of the length of the §

V631765 f

present and preceding gradients. Formula II.B.4.8 is the key

equation in implementing the Fletcher-Reeves Conjugate Gradi-

T Mgy

ent Algorithm. Once dk has been selected, normalize its

length to one.

3. Let the initial step length, SL, be 10_3 and let N = 1.

Compute the trial values of k and g, Tk and Tg, using

Tk k + SL * Dk,

(II.B.4.9)

Taq a + SL * in.
If G(Tk,Tqy) > G(k,g), let SL = 2 * SL, otherwise go to 4.
If N=10; Kk = Tk, ¢ = Tq, go to 2. (o step larger than

20 % 1073:1.0 is allowed.) If n<10; N = N+1, go to 3.

4. I£ N > 1 ( at least one step produced an increase), i
}
i

use a golden section search between Tk,Tg for step N-2 and

39

»




- ——————— . 4!

Tk and Tq for step N to determine the maximum function

value and the k and g values, kMAX and gMAX, which produced
it. Here k = kMAX, g = qQMAX, go to 2.
If N=1, go to 5. ‘
5. Since the initial step along the indicated direction
’_ﬁ produced a decrease in the function value, check to see if
you are at a local maximum. Determine the function value
L at points at 30° intervals on the circumference of circles

t - - -
with radii of 10 3,10 2,10 1 (0° is parallel to the g axis).

If the maximum of these test values is greater than the pre-
sent value, set k and g to the values which produced the
maximum value, set the present function value to the maxi-
mum, set 1 = 1 and go to 2. Otherwise terminate.

The program above assumed that, given g, k and the
data, the value of the likelihood could be calculated. One

difficulty in performing the calculation is that the integrand

of the conditional density may contain singularities. As a
precondition to using an IMSL routine to evaluate the inte- j
gral, these potential singularities must be removed. The 5
“technique employed requires that the coefficient of the term
that goesto infinity as one of the limits of integration is
approached is added and subtracted. The part that is added

! is then integrated separately and added to the part that is

evaluated by the IMSL routine.
To procede with this technique we first split the

integral into two parts. Thus, ignoring the part of II.B.4.4
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outside the integral, we have

L - - - L/2 , ___ _
{ K-9 1(1_z)q l(x-yz)q l.kyzy, - f K-d l(l-z)q 1

0 0

L
)3~ 1ek¥24, 4 S 25" (125) T (4oyz) I 1KY 2y,
L/2

x (xX-yz
(IT.B.4.10)

In the first part of the RHS of II.B.4.10 the term 2% could

tend to infinity as z tends to zero if k-g-1 < 0. If we set
z equal to zero in the remainder of tlie integrand we get

(l-z)q-l(x-yz)q-lekyz[ = xq-l. Adding and subtacting this
z=0

term times the term that contains the singularity, we have

L/2 - _ -
f X9 (122)9 (x-y2) 9 Lekyzg,
0
L2 g-1 g-1 g-1 kyz _g-1_k-g-1. .g-1_k-g-1
= z*7974 (1-2) (x=y2) e Y% _x 2 +X z dz
0
L/2 ) ) L L/2
= 2K L[ (122) 371 (x-y2) T LKY2 43711z + X9 1 / X" lgy
o) 0
Thus,
L/2 _ _ _
/ 257971 (1-2)3 71 (x-yz) T 1KV2g,
0
L, k-q
L/2 ) } ) o
= f zk-q-l[(l-z)q 1(x-yz)q lokyz_,q l]dz+xq 1 —Zg:a— .
0

(II.B.4.11)
41
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Recall that since g < k, k~-q > 0 and the second integral on
the RHS can, in fact, be integrated as shown. Now the inte-
gral on the RHS can be evaluated by IMSL routine DCADRE and
the second part of the RHS can be easily computed.

Applying this technique to the second half of the

integral, recalling that the case where L = 1 and L = 3
must be considered separately produces
1 k-q-1 -1 q-1 kyz
f o 2T (1-2) T (x-y2) SR AP
1/2
1
= [ (2T (xoy2) TTLRYEL (o) TN (197 )y,  (11.B.4.12)
1/2
_ (1/2)%
+ (x--y)q leky q
and
*/Y  g-q-1 q-1 g-1_kyz
2o 97 (1-2) (x-yz) e dz
x/2y
x/y - e _ e _
= f (x-yz)9 l[zk 9 l(l-z)q lekyz_(g)k q l(l-i)q lekx]dz
x/2y b4 Y
X\4q
(5) 4.13
+ (Xyk-a-1;_xyq-1 kx 7a (II.B.4.13)

y

Since g > 0, the second terms in the two previous expressions

are properly integrated.
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Two points should be noted. First, if k-g-1 > 0 or
if g~1 > 0, then these steps are not required. But whether
they are required or not, they are always accurate. Since
the exact path of the search algorithm is unknown at the
start, these expressions are used throughout to insure accu-
rate calculations regardless of the k and g values encoun-
tered. Second, if x = y, two parts of the integrand simul-
taneously tend to infinity and this procedure breaks down.
This does not pose a problem for continuous data since the
probability of this occurring is zero. However, if discrete
values are used or if the data is truncated because of limits
on the accuracy of the measuring device, then the data may
have to be preprocessed to insure that successive values are
not equal by adding a small increment to one of the values.

When the program was written, its accuracy was veri-
fied by three checkes. The case k = q implies independence
in the basic model since as g tends to k the probability that
An equals zero tends to one and the probability that Bn

equals one tends to one. Hence, in the limit xn = Gn and Gn

. is an iid sequence., The logarithm of the likelihood function

for independence was calculated and compared to the program
results for several values of k and q where k = g. The two
calculations were equal within machine roundoff and compu-
tational accuracy. The special cases of k = 2, g = 1 and
k = 3, g =1 discussed in II.B.3 were also computed. The

logarithm of the likelihood function was computed using each
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of the conditional densities derived in II.B.3.7 and II.B.3.8.
When the results of these calculations were compared to the

b, program results with the specified k and q values, the re-

;.; sults were equal within calculation and roundoff accuracy.

P The results of the tests of this program when used

| with simulated data with known parameter values are presented
-1 in Section II.E.
! Note that there are natural moment estimators for the

three parameters, k and g and ; in this model. These follow

S A S PV

& from the fact that

P - - 4.
var(x_) -
2 _varia, var (X) x _ 1
[E(X )] [E(X)] u
Thus we use for moment estimations
i
b= % (II.B.4.14)
| g = (l-p(1)k (II.B.4.15)
!,
| k = (%) ? (II.B.4.16)
; - —T . . .
SX

These moment estimations will be compared to maximum likeli-

i
|
{
!
!

hood estimations in the case where y = 1 in Section II.E.
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5. Directional Moments

Unlike processes with normal marginals, non-normal
processes are not completely determined by their correlation
structure. Directional moments not only demonstrate this
difference, but also help to differentiate processes with
similar correlation structure and identical marginal distri-
butions. They can also be used to help determine parameter
values. In addition, they may also be viewed as another
way of characterizing the joint distribution of the process.
With

X, = AX,_ ] +BpG,

n nn

with all random variables defined as in II.B.1l.1, we first

address E(X X2 ). We have
n" n-1
Xn Anxn-l + BnGn
2 _ 3 2
ann—l = A Xn 1 + Bnann-l'

Taking expectations, recalling Gi and Xj are independent if
i> 3, {Bn} and {Gn} are independent, and A, and xj are

independent if i > j. Then

2

N 3 2

E(X X7 ;) = E(A)E(X ;) + E(B)E(G )E(X] ;)
- k-g k(k+1) (k+2) g, ; ., k(k+l)
B k K3 k kz'
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! 2 k(k+l) . (k-q)
B(X X ;) 3 (=== - (k+2) + q]
[ E(X. X2 ) = k(k+l)[k2+2(k'9)l (I1.B.5.1)
, n“n-1 ;3 k TR
: Since
{ 2 _ 2.2 2.2
! X2 AX | *+2ABGX _; +BG,
}
¥
|- 2 _ 2.3 2 2.2
XpXp-1 = AXp-1 ¥ 2Aanann-l + Bnann-l
4
P Taking expectations as before
g
E(x?X__,) = E@2)E(X>_.) + 2E(A_)E(B_)JE(G )E(X>_,)
n“n=-1 n n-1 n n n n-1l

. S T AT

l.' 2 2
‘ + E(B)E(GOIE(X _;)

(k=g) (k=g+1) k(k+1) (k+2) . 2(k-g) q ; k(k+l)

S r7 T Vo g SPT pi v g 3

k(k+1) N k k K2
‘ , 9ig+l) k(k+1) 4
i k(k=1) 2
j
! R
i After simplification we get
i E(XZX ) =  ik-q)k+1) (k+2) | gk (k+1) (I1.B.5.2)
i n“n-1 k3 k3

Note that these two directional moments are different,

indicating that the process is not time reversible.
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6. P(X >X )

n+l n

Another characterization of the joint distributiocn
and the time directionality of the process is given by
P(Xn+l> Xn). There is a simple analytical solution for

P(X > xn) in the GLAR(l) process. Consider,

n+l

P(Xn+l> X ) = P(A + X

n n+an Bn+lGn+1> n)

P(B > [l-An+l]Xn) (II.B.6.1)

n+1%n+1
Recall that Bn+l is Beta(q,k-g) and A1 is Beta(k-q,q).

Hence, [1—An+l] is Betaf(g,k~q). Since Gn+l and X are inde-~
pendent and have the same marginal distribution and Anil and

B are independent, each side of the inequality in II.B.6.1

n+1l
has the same distribution and the random variables are inde-

pendent. Hence

1 O~ A

This is a strong property of the process. While the

process, as seen by the directional moments, is not time

reversible, the fact that P(Xn+l> Xn) = (.50 means that

sample paths will have as many "runs up" as "runs down".

i, ey WA P Py AP i

Sample paths are given in Figures II.B.6.1 and II.B.6.2.
An additional point of interest occurs when k =1

and the process has exponential marginal distributions.
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Another exponential first-order autoregressive process in

which P(Xn+1> Xn) = 0.50 is the PREAR(l) process. This is
a special case of the two parameter NEAR(1l) exponential

process of Lawrance and Lewis [Ref. 8] in which the two

1

parameters o and 8 are related by 8 = =" The two

exponential processes are very similar in sanple path proper-
ties. However, the GLAR(l) process has a smoother joint
distribution. In fact, the likelihood for the PREAR(1)
process is discontinuous, making it difficult to get maximum

likelihood estimators.

C. FIRST-ORDER MOVING AVERAGE BETA-GAMMA MODEL, GLMA(l)

1. Introduction

Another special case of the GLARMA(p,q) model is the
first-order moving average model where p = 0 and g = 1. This
arises naturally from the key result that an {Xn} sequence
can be formed by the random sum of two independent Gamma ran-
dom variables. 1In the first-order autoregressive case of
Section II.B, the generation scheme was given by equation

II.B.1.1 and is repeated here

The distribution of the {xn} sequence depends on the inde-
pendence and distribution characteristics of X,.1 and G .
It should be noted, however, that any two independent random

variables with the required Gamma distribution could be
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substituted for X _, and G, without changing the distribution

of X,. In particular if we substitute G, for X _, and G__,
for Gn’ we produce the first-order moving average process

which generates the {Xn} sequence using

X, = AG, +BG ;. (Ir.c.1.1)
where {Xn, n=1,2,...} is a second-order stationary sequence
of random variables with marginal Gamma(k,l) distributions,
{An, n=1,2,...} is an iid sequence of Beta (X-g,q) random
variables; {Bn, n=1,2,...} is an iid sequence of Beta {q,k-g)
random variables; {Gn, n=20,1,...} is an iid sequence of

Gamma (k,1) random variables; {An}, {B_}, and {Gn} are inde-

n
pendent; 0 < q < k. The Gamma random variables are para-
meterized as in II.B.l with density as in II1.B.l.2. The
Beta random variables have density as in II.B.1.3.

In this section we will address the correlation struc-

ture of the {Xn} sequences and that of the {Xn}, {Gn} se-

quences, theoretical ranges for possible correlations for

" the {Xn} sequences, directional moments, and the P(xn+l> X ).

2. Correlation Structure

Using II.C.l.l to defipne X and X _, we have

xnxn~l = (AnGn + BnGn—l)(An-lGn-l + Bn-lGn-z)

2
AnAn-lGnGn-l"'Aan-lGnGn-2"'An-anGn-l"'ann—lGn-lGn-Z'
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Using the iid nature and independence of {An}, {Bn}, and

{Gn} and taking expectations

E(X,X 1) = E(A)EQ_)E(G)E(G,_)+E(A )E(B _|)E(G)E(C _,)
+ E(AL_1)E(B)E(G2_|)+E(B)E(B__|)E(G__)E(G,_,)
= DB @ - G (ﬂ;l;l—]) v (D2
= 1+ (k_;ﬁ) (&) (i-) (II.C.2.1)
Therefore,
cov(X_,X ;) = (k—;ﬂ) (£ (J%)
and
CORR(X_,X. ;) = (1-3@ (%), (I1.C.2.2)

A simple calculation will show that for lags greater
than one the correlation is zero. So equation II.C.2.2 plus
the knowledge that greater lags are zero is sufficient to
specify the correlation structure of the {Xn} sequence.

One might note at this juncture that the correlation
of the {Xn} sequence is constrained to lie in the interval
(0,%). The reason for this constraint and a method for re-

laxing it will be discussed later. It is also worthy of
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note that the {Xn} sequence is stationary and has the same
marginal distribution as the {G;}”sequence, if Xy = Gy-

As indicated in II.B.2 the {Xn} and {Gn} sequences
can be considered to be a bivariate, correlated Gamma(k,1l)
process. As such, the correlation structure of this bivari-

ate Gamma may be of interest. Consequently, we first develop

the correlation of xn and Gn in the standard fashion.

xn = AnGn + BnGn-l
X G = A G2 + B G G
nn nn nn n-1

Taking expectations as before,

_ 2
E(X,G) = E(A)E(GJ) + E(B)E(G,)E(G,_;)
_ k- k{k+1l]
= P EE
k
_ Kl+k-g
<2
Therefore,
cov(X_,G.) = 139
n’'"n Kk

and
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= k=g
CORR(X_,G ) = == - (II.C.2.3)

Now consider the correlation of X and G _,- We have

n nn n n-1

- 2
ann-l - AnGnGn—l + BnGn-l'

Expectations in the standard fashion produce

— : 2
E(X,G,_;) = E(A)E(G)E(G,_;) + E(BE(G _;)
- k-q , qklk+l],
k k k2
2
= k*q a
k2
Hence, 4
= S
COV(xn’Gn-l) k2 H
And finally
CORR(Xn,Gn_l) K (I1.C.2.4)

A simple calculation convinces one that the correlation for
lags greater than one is zero. In addition, it is clear

that CORR(Xn,G =0 form=1,2,... Hence, II.C.2.3 and

n+m)
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II.C.2.4 are sufficient to specify the correlation structure
of the {Xn} and {Gn} sequences.

It has been noted before that the range of correla-
tions for the first-order moving average process generated
b by the Beta-Gamma method of II.C.l.l1 is constrained to lie
:“3 in the interval from zero to one-guarter. There may be other
random linear combinations of Gamma random variables which
B - give a moving average process with Gamma marginals and a
greater range of positive correlations. Thus we now examine
. a more general hypothetical generation process to prove that
any random, linear combination of two independent Gamma random
g!. variables which generates a sequence with the same first two
| moments as those Gamma variables has a correlation that lies
in this same interval. 1In fact, this proof only reguires
that the dependent random variable have the same first two

marginal moments as the generating Gamma variables.
3 THEOREM:
If the {Xn} sequence is generated by

(IT.C.2.5)

where {Xn} is a second-order stationary, non-negative sequence
i of random variables with the same first two moments as the

{Gn} sequence; {An} and {Bn} are iid sequences of random

variables; {Gn} is an iid sequence of Gamma(k,l! random

PURURORE
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variables; and {An}, {Bn}, and {Gn} are independent, then

0 < CORR(X_,X__;) < 0.25.

Proof: Since {An}, {Bn}, and {Gn} are independent and {Xn}
is non-negative, {An} and {Bn} must be non-negative. Hence
E(A) > 0 and E(B) > 0.

Taking expectations of II.C.2.5, we have

E(X)) = E(E(Gy) + E(BE(G, ;)

1 = E(A) + E(B) (II.C.2.6)

Hence, 0 < E(A) < 1 and 0 < E(B) < 1.

Computing the serial correlation of fxn} yields

ann-l = ‘AnGn + BnGn-l)(An-lGn—l + Bn—lGn-Z)
2
- AnAn-lGnGn-l'*'Aan-lGnGn—Z-"An—IBnGn—l"'Ban—lGn-lGn—Z

Then

E(X_X E(A_ )E(A,_{)E(G)E(G,_;) +E(A )E(B (G )E(G,_,)

n-l) n-l)E -2

" .

1 + EE(B) () :
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Since E(Xn) = E(G_)

n 1,

- 1
COV(X,X ;) = E(A)E(B) ()

-1

And since VAR(Xn)= VAR(Gn),

CORR(X ,X _ = E(A)E(B)

l)
Using II.C.2.6 and its consequences, we have

. (I1.C.2.7)

P L

0 < CORR(X ,X E(A)[1-E(A)] <

n-l)

So, in general, if {Xn} is second-order stationary with the

same first two moments as {Gn}, the serial correlation of

{Xn} is bounded below by zero and above by one-fourth. Q.E.D.
This constraint on the correlation appears to be

restrictive since, in the classical case, when two normally

distributed random variables are added to produce a normal se-

quence, the range of correlations is 0—%,%0. The two situa-

‘tions, however, are not comparable. It is clear upon reflection

that the constraints imposed on the {xn} sequence in the pre-
vious theorem are more severe than those imposed upon the
classical normal case. In the above theorem we required that
both the mean and variance of the {Xn} sequence squal that of
the innovative sequence. However, in the classical normal

case (where zero mean normals are used as innovative factors)
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only the mean of the generated sequence is egual to the mean
of the innovative sequence. The variances are not equal.

We now examine the case where the generated sequence is re-
quired to have the same mean as the innovative sequence, but
is free to have a different variance. (This is the case
with the usual constant coefficient, linear additive MA(l)

scheme,)

THEOREM
If the non~negative {Xn} sequence is generated by
I1.C.2.5 and all variables are defined as for that equation
except that {Xn} is only constrained to have the same first
moment as {G_ }, then 0 < CORR(X ,X _;) < 0.5.
Proof: Taking expectations of II.C.2.5 with the new circum-

stances produces
E(X) = [E(A) + E(B)]E(G)

1 = E(A) + E(B)

and 0 < E(A) <1, 0 < E(B) < 1 by following reasoning identi-

cal to that above. Calculation to determine the serial corre-

lation can initially proceed as usual.

S (AnGn'FBnGn-l)(An-lGn—l‘+Bn-lGn-2)
E(X.X_ .) = 1+ E(AE(®) (&
n“n-1 k
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_ 1
COV(X_,X ;) = E(A)E(B) ()

To this point all calculations and reasoning have been the
same as that which produced II.C.2.7. However, since {xn}
is not constrained to have the same second moment as {Gn}

the most explicit result obtainable is

E(A)E (B) (§)
VAR(X) '

CORR(X_,X _1) (II.C.2.8)
where VAR(X) is, of course, a function of VAR(A), VAR(B),

and VAR(G). Since it is obvious that the smaller the value

for VAR(X), the greater the serial correlation for {Xn},

let us reduce VAR(X) to its smallest values. Since the dis-
tribution of {Gn} has been specified, its variance is fixed.

Let P(An==a) = 1 and P(Bn==b) = 1. Then trivially E(A) = a,
E(B) = b and VAR(X) = (a2-+b2)(%). Under these conditions

II.C.2.8 becomes

ab

CORR(X ,X _,; = .
n’"n-1 a2 + b§

If we further specify that a = b, then CORR(Xn,Xn_l) achieves
its maximum of 1/2. Q.E.D.

The situation developed above is comparable to the
classical situation where the innovative factors have distri-
bution, N(O,oz). Except for the degenerate case where one
coefficient is zero, the sequence generated by a linear com-

bination of innovative factors may have the same first moment
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as the innovative factors, but will have a different second
moment. So, under comparable conditions the random, linear
combination of Gamma(k,l) random variables can produce
positive correlations equal in magnitude to the positive
correlation produced by a classical normal process. The
distribution of the {Xn} under these circumstances is unknown.
If the distribution of the {Xn} is constrained to
be Gamma(k,l) and the Beta-Gamma generation scheme is used
to generate the {Xn}, then the maximum correlation that can
be achieved is one-fourth.

3. Directional Moments

As mentioned in II.B.5 the directional moments of a
non-normal process are not necessarily equal and may provide
valuable information about a time series. First, considerx

From II.C.1.1

2
E(XnXn

1)

2.2 2.2
AnGn + ZAanGnGn-l + BnGn-l

Therefore,

_ 2 2 2 2.3 2
- AnAn—lGnGn-l+2AnAn-anGnGn—l n—anGn-l+Aan-lGnGn—2

2 2
+ 2AanBn-lGnGn-lGn—2+Ban-lGn-lGn—2
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Taking expectations as in II.C.2 yields

S T (k=) 2 (k-q+1) , 2(k=q)%(k+1) , (k-g)g(g+l) (k+2)
n“n-1 3 3 4
k k k
(k 2 2 2
+ k-q) (k=g+l)q _ 2(k-q)"q” , g”(q+l)
K’ k> K>

Upon simplification this produces

2 L -
E(x2X ) (k=q) [3k-q+3] (k g)g[Zg(k+1)+k+2]
n“n+l k3 k4 k
2
+ x(2k-g+1] (II.C.3.1)
k
In an analogous fashion
2 _ 2 2 2 2
Xn¥p-1 = AnAn—lGnGn-l + 2AnAn-an-lGnGn-lGn-2 + AB16,Cn-2
2 3 2 2 2
* An-anGn-l + 2An-anBn—lGn-lcn-Z * Ban—lGn-lGn-Z
Taking expectations we have .
2 2
2 - Ik~q) “(k-g+l) _ 2(k=q)°q . (k-g)g{g+l)
E(X X5 ) = + .
n'n-1 k3 k3 k3

(k-g) (k=q+2)g(k+2) 2(k-q)%f(k+1) . q2(§+l)'

+
x4 X K

which simplifies to
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4 2
. 2 (k=q) “ (k+g+1) q(g+l) (2k-g)
! E(xnxn—l) k3 + 3
k
(k-q) g (k+1)
+ 1 (I1.c.3.2)
k

4. Empirical P(xn+l> Xn)

No analytical procedure was found to determine

P(X > xn). Hence, a simple computer program was constructed

n+l
to evaluate this condition for a series of sixty-eight thou-
sand pairs of numbers generated by the Beta-Gamma scheme for
each of ten random number seeds. The answer obtained was
considered to be accurate within 0.001. The comparisons were
run for each of seventy-nine values of q, from 0.05 to 3.25

in increments of 0.05. All of the results of the comparisons
fell in the range 0.499 to 0.501. Fourteen of the values were
different from 0.500. No pattern was apparent in the devia-
tions from 0.500 and these deviations were considered to be
random fluctuations within the given margin for error. It

thus seems clear that P (X > Xn) for this process is like

n+1l

T A O AT N S O 1,

the GLAR(l) process but no proof has been found.

D. OTHER CASES OF THE GLARMA(p,q) MODEL

l. Introduction

A primary advantage of the GLARMA(p,q) model is the
ease with which it can be adopted to cover a variety of
special cases. Two special cases, the first-order autoregres-

sive GLAR(1l) and the first-order moving average GLMA(l), were
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covered in II.B and II.C. The intention here is to briefly
present three additional cases of the general model and derive
the correlation structure of each case. The special cases
considered are the first-order mixed model, GARMA(1l,1),

the second order autoregressive model GAR(2), and a bivariate,
first-order, autoregressive model BGAR(l). The purpose

in presenting these cases is to demonstrate the flexibility
of GLARMA(p,q) and not to present a complete, detailed dis-
cussion of each model. Further extensions of the special
cases of the GLARMA(p,q) model from the examples given are
obvious. Details will not be given.

2., GLARMA(1l,1)

Consider the following scheme for generating an {Xn}

sequence of random variables.

X = B A + C._G (I1.D.2.1)

A = DA + F G . (I1.D.2.2)

- where {Xn, n=12,...} is a second-order stationary sequence

of Gamma (k,l) random variables; {An, n=20,1,...} is a
second-order stationary sequence of Gamma (k,l) random
variables; {Bn, n=1,2,...} is an iid sequence of Beta(k-q,q)
random variables; {Cn, n=1,2,...} is an iid sequence of

Beta (4,k-9) random variables; {D,, n=1,2,...} is an iid se-

quence of Beta(k-r,r) random variables; {Fn, n=1,2,...} is
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an iid sequence of Beta(r,k-r) random variables; {Bn}, {Cn},
{Dn}, {Fn}, and {Gn} are mutually independent; 0 < q < k; é
0 <r < k. The Beta (m,n) density is given in II.B.l1l.3; the
Gamma(k,1) density in II.B.l.2.
Before the serial correlation of the {Xn} sequence
can be determined, the serial correlation structure of the {An}
sequence and the correlation structure between the {An} and
{Gn} sequences must be derived. Proceding first with the
serial correlation of the {An} sequence, from II.D.2.2 we

have

An = DnAn--l + FnGn

So

_ 2
A A = D An

n“n-1 n"n-1 * FnGnAn—l

NPT e S B PR R PO YRV

Using the iid nature of {D_}, {Fn}, {Gn}; noticing that when

i> j, Di and a F, and A., and Gi and Aj are independent;

i’ b)

" recalling the independence of {Fn}, {Gn}; and taking expec-

tations yields

- (k=r k(k+l) r
E@php)) = O35 Tk
E(AA_ ) = kZ+k-x (II.D.2.3)
n n—l = kz . - . .
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Therefore,

_  k-r
COV(A_,A _;) = 7
and
CORR(A_,A .) = X=X (II1.D.2.4)
n’®n-1 X - -D.2.

In fact An is just a GLAR(l) process, so the result is not
surprising. Using II.D.2.2, II.D.2.3, and an induction argu-

ment leads to the general m-step correlation formula

CORR(A,,A__ ) = (577, n2>2m>0. (IT1.D.2.5)
The correlation structure between {An} and {Gn} can
be derived in a similar fashion. However, it is more direct

to note that since the {An} sequence is the same as the GLAR(1l)

N TP e AR, g A,

process of Section II.B, the {An}, {Gn} correlation structure
will be the same as that derived for the {Xn}, {Gn} sequences

in II.B.2. Hence,
-~ (L, (k-rm
CORR(A_,G _) = () (=", n>m>0. (I1.D.2.6)
Of course, if j > i, then CORR(Ai,Gj) =0

Now the serial correlation for the {Xn} sequence can

be found. From II.D.2.1




—_—

Xn = BnAn-l + CnGn
ann-l = (BnAn—l'+ann)(Bn-lAn-Z-FCn-lGn-l)
= B_B +B_C C_A

n n-lAn—lAn-Z n n-lAn-lGn—l+Bn-l n n—2Gn

+ Cncn--lGnGn-l'
Using the stationarity of the {An} sequence, the iid nature
and independence of {Bn}, {Cn}, {Gn}, the fact that A; is
independent of Gj when j > i, and the fact that {An} is inde~

pendent of {Bn} by construction and taking expectations, we

have

E(XpXh-1) E(BEB, ) E(A,_ n-1"n-1

13,2  *E(BE(C _DE(A,_;C. ;)

+ E(B__1)E(C)E(A__,)E(G)+E(C_)E(C,_])E(G)E(G,_,),

n-1

2
(E(B) 1°E(A__|A,_,)+E(B)E(C,_{)E(A__;G ;)

2 2
+ E(B__1)E(C)E(A _,)E(G)+(E(C)I1%(E(G)1°. 4

(II.D.2.7)

From II.D.2.1

E(XE(X ) = [E(B)EA _+E(C)E(G)]

1)

[E(B,_{)E(A _,)+E(C _{)E(G _1) ],
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E(X )E(X [E(B_)1%E(A__)E(A__,)+2E(B )E(C_)E(A_)E(G_)

n-l)

2 2
+ [E(C)ITIE(G )™, (I1.D.2.8)
Using II.D.2.7 and II.D.2.8 to compute COV(Xn,Xn_l) yields

_ 2
cov(X ,X _;) = [E(B)I®[E(A _ A . )-E(A__)E(A__,)]

+ [E(B_)E(C)IIE(A__1G _1)-E(a )E(G,)]

Since {An}, {Gn}, and {Xn} are all Gamma{k,l), VAR(Xn) = VAR(An)

= VAR(Gn). Hence,

_ 2
CORR(X_,X _;) = [E(B )]“CORR(A ,A_ _|)+[E(B )E(C_)ICORR(A ,G,)

From II.D.2.4 and II.D.2.6 we know this equals

- (kK-9,2k-r k-q g

k) (IT.D.2.9)

Using II.D.2.5 and II.D.2.6 in an induction argument
yields the general m-step correlation of
m

= (kcrym-l 2 £_£ g §
corr(x_,Xx__) = (5D 2En L ED @ . i

Recognizing the expression in brackets as CORR(Xn'Xn-l) and

letting o equal this correlation we have
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: _ k=-r,m-1
CORR(Xn,Xn_m) = (T [ n>m> 1. (II.D.2.10)

Figqure II.D.2.1 shows the possible combinations of
one- and two-step correlations for the GLARMA(1l,l) model.

This concludes the development of the correlation structure ]

of the GLARMA(1,1) model.
3. GLAR(2)

Jacobs and Lewis [Ref. 12] first developed the follow-
ing mixture scheme for generating a p-order autoregressive
processes. We now adopt that scheme for generating a second-
order autoregressive sequence of random variables. This is
the special case of GLARMA(p,g) with p = 2 and g = 0. As such

it closely resembles the GLAR(l) process. Let

X, = ann_Tn+ C G, (II.D.3.1)
where {Xn, n=-1,0,1,...} is assumed to be a second-order
stationary sequence of Gamma(k,l) random variables; {Bn,
n=1,2,...} is an iid sequence of Beta(k-gq,q) random varia-

“bles; {Cn} is an iid sequence of Beta(q,k-g) random variables;
{Gn} is an iid sequence of Gamma(k,l) random variables; {Bn},
{Cn}, {Gn} are independent; also T, is 1id with P(En =1) =
1 -P(Tn =2) = 1. The Gamma(k,l) and Beta(m,n) densities are
found in II.B.1.2 and II.B.l.3, respectively.

This generation scheme works even though Xn-l and

X are dependent random variables. The mixture of X _, and

n~2
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: X,., produced by II.D.3.1 is Gamma distributed and indepen-
‘§ dent of G,. Hence, II.D.3.1 is simply another example of the
random sum of two independent Gamma random variables producing

= another Gamma random variable.

Two special cases of II.D.3.1 are as follows. When

i o = 1, the GLAR(2) process reduces to the GLAR(l). When gq = Kk,

the {xn} sequence is 1iid.

p. ¢ The serial correlation of the {Xn} sequence can be

13
! calculated in the usual fashion, assuming stationarity of
f the process we have
A}
d X, = BpX o * C. G, k>0; 0<gqg<k
and
i.
xnxn-l = ann—Th xn4.+ Cncnxn-l'

Using the independence of {Cn} and {Gn}, the fact that X;

is independent of Cj' Gj and Bj when j > i and taking expec-

- tations we have

| = 2 -
; E(X X ;) = oE(BE(X]_ ;) + (1~a)E(B )E(X _ X _-)+E(CHEG)E(X__;)
| o . ck=g) kik+1] k= q
i = aCFH GET + dma) (EDEX (X o) + 3
!
since E(Xn) = E(G,) =1 by assumption. Using the second-order

70




stationarity of {xn}

E(x x__) (1 - elled),

Upon simplification

k

EXX ) ak 2 +ak~akg-aq+kq
n‘n-1 k (g+ak=-aq)
Hence,
1, . a(k-q)
COVI(X ,X _;) (k)[q+a k_q)]

and

a (k=q)
CORR (X, + X _y) q+a (k-q)
If o = 1, this equals 1 - %; if k = g then it is zero.

d > k it is clearly non-negative.

The lag two correlation can be
similar fashion. We have
Xn = ann-Tn+ CnGn:
xnxn—Z = ann-TXn-Z M CnGan-Z

a (k=q) (k+1)
) * %

(ITI.D.3.2)

calculated in a

Since




E(XX o) = ofDEE _;x ) + (1m0 EDeEd ) + §.

Using the second-order stationarity of the {Xn} sequence we

can write
E(XIEX. ) = o EDEEX. HEMX. )+(l-a) (D Ex )12
n n-2 q n-1 n=-2 k n-2
+ ek )12,

so that

covix, x _p) = a§d) (B S -E(X__])E(X__,)]

n-lxn—

+ (1=a) 5 B2 -(E(x__) 12

2
+ % - %[E(Xn)]

k-
o (5 [E(X_ X _,)=E(X _{)E(X,_,)]

+ Hmal kg (g2 ) - (E(x__,)3%

]

k- (1-a) (k=q)
o (FEhcovIX_ i X _,) + > VAR(X__,) .

Hence,

- (k- (1-a) (k=q)
CORR(X_,X__,) = a(*g3)CORR(X__,,X _,) + = ,
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_ k~-q, (g+ak=-2ag
CORR(Xn'Xn-z) = i )[q+a(k-q) ] (IT1.D.3.3)
The solution procedure for I1.D.3.3, if followed for
xn—m’ will produce the general recursion equation (Yule-Walker)
that can be used along with II.D.3.2 and II.D.3.3 to compute
the m-step correlation. The formula thus produced is

CORR(X_,X_ _ ) = (5§3)[ac0RR(x X )

m n’“‘n+l-m

+ (l—a)CORR(Xn,X )1, (IT.E.3.4)

n+2-m

n>m>1,

As mentioned in previous sections the (xn’Gn) pair
can be considered to be a correlated, bivariate pair of
Gamma (k,l) random variables, Therefore; we proceed to

derive the correlation structure between these two sequences.

From II.D.3.1 we have

n n n-Tn nn
and

2
= +
X, G, BoXp-q Cn* Cpp:

Recalling the independence of {Cn} and {Gn} and Xi and Gj

when j > i, taking expectations yields
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H S D .
|
i

i < (k=g q, (k) (k+1)
| E(XnGn) ( n ) + (k)—-;i—___
|
k
Hence,
g CoV(X ,G) = ;{92- |
A .
- a
% and i
\
—4 9
2 CORR(Xn,Gn) x (I1.D.3.5)
3{
) Continuing this process we have
f 1]
! Xy ann—T * ChGn %
!
and |
XnGn--l = ann-TGn-l + CnGnGn-l'
Thus

k- k-
E(X G, _ ) a((SEMEMX 16 ) + (1-a) (5T + 2.

|
i
;




e -

COV(X,/G,_1) = a(&fi)cov(xn_l,cn_l)
And
- k-
CORR(X_,G 1) = o= .

One further step in this process using an arbitrary

m-step lag produces the general recursion formula

k-
CORR(X_,G. ) = (5 %) [aCORR(X ,G )

n+l-m

+ (1-0)CORR(X )1, n>m> 2 (II.D.3.7)

n'Gn+2—m

Figure II.D.3.1 displays a plot of the possible com-

binations of CORR(X ,X,_ ;) and CORR(X ,X _,). Note that when

n-2
o = 1, the GLAR(2) process reduces to the GLAR(l) and

CORR(X ,X,_,) = (ET:-S)2 which defines the lower boundary of the
— — =k-
plot. When a = 0, CORR(Xn,Xn_l) = 0 and CORR(Xn,Xn_z) _ES

which goes from zero to one. In the interior of the graph,

.when 31 does not assume an axtreme value, CORR(Xn’Xn—Z) does

not reach a value of one. This is demonstrated by the

following calculation. From II.D.3.3

CORR(Xn,X

= k-g, ,g+ak=-20g
n-2) = | % Y[ ] .

g+a{k-q)

o+ s

If this correlation is to equal one, then
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+o k=20 _ k
! W = -k-q (II1.D.3.8)

which quickly reduces to
ﬂl q(-2ak-g+2kg) = 0
vﬁf- Since 0 < g, this requires
-2ak-g+2agq = 0

Therefore,

.' a=mg_T).

m egteen e avre

B Since we know that 0 < g < k, a must be less than zero.
However, o is a probability and, hence, is non-negative. i
Therefore, the original requirement in II.D.3.8 cannot be
satisfied. Hence, CORR(X,,X, ,) cannot equal one.

4. BGAR(1l), Bivariate Model

To this point the only examples of bivariate Gamma
processes presented were those in which the innovation se- i

quence was one part of the bivariate prncess with the gener- . H

ated sequence the other part. The simple random, linear
structure of the GLAR(l) process makes it easily extendable
to a variety of bivariate models. We address only the

| simplest. Consider the following pair of random variables,

both of which are formed from the same innovation process, {Gn}: i




X, = BX _; +CG., (II.D.4.1)

Y. = DY . +FG., (I1.D.4.2)
where {Xn, n=20,1,...} is a second~order stationary sequence
of Gamma(k,l) random variables; {Yn, n=20,1,...} is a
second-order stationary sequence of Gamma(k,l) random varia-
bles; {Bn, n=1,2,...} is an iid segquence of Beta{k-g,q)
random variables; {Cn, n=1,2,...}) is an iid sequence of
Beta(g,k-q) random variables; {Dn, n=1,2,...} is an iid
sequence of Beta(k-r,r) random variables; {Fn, n=1,2,...}
is an iid sequence of Beta(r,k-r) random variable; {Gn,
n=1,2,...} is an iid sequence of Gamma(k,l) random
variables; {Bn}, {Cn}, {Dn}, {Fn}, and {Gn} are independent;
0 <r <k; 0 <q < k.

This is a special case of a general situation. 1In
a more general case the {Xn} and {Yn} sequences could have
separate, correlated innovation sequences instead of sharing

a single {Gn} sequence. In addition, the {B_} and {Dn}

" sequences and the {Cn} and {Fn} sequences could be correlated.

Before examining the correlation between {Xn} and
{Yn}, it will be necessary to address the correlation of each
of these sequences with the {Gn} sequence. This is most
easily handled by recognizing that the relationship of the
{xn} and {Yn} sequences to the {Gn} sequence is exactly the

same as the {An} sequence to the {Gn} sequence in I1I.D.2.2.
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. Hence, the correlation structure will be the same. There-

Ny

L; fore, if we let o, = CORR(X,,X _,) and py = CORR(Y ,Y
! n=1,2,..., these correlation structures can be written
4

without further analysis as

o = g = - = - .
.‘} CORR(Xn,Gn) " 1 CORR(Xn,Xn_l) 1l Ox, (IT1.D.4.3)
,
e = g k- = - H
! CORR(Xn,Gn_l) (k)(—fg) (1 px)px, (ITI.D.4.4)
l -
73 = g u m = - m
: CORR(X_,G__) (%) (2 (1-pyg)py, n>2m > 0. (II.D.4.5) |
,. 3
and ;
’9 ‘_
: _ L o_ g s l
', CORR(Y_,G ) = ¥ = 1 - CORR(Y ,¥ ;) = 1=op,; (II.D.4.6) £
'fz - r, k-r _ :
CORR(Yn,Gn_l) = ('E) ("k—) = (1- DY) Pyr (1I1.D.4.7)

- &y k-r.m _ - m
CORR(Y .G, _.) = (f) (=) = (l-pyloy, n>m>0 (II.D.4.8)
. The assumption is that the bivariate process is stationary,
although it should be noted that starting the univariate

processes in a stationary mode does not make the bivariate

process stationary. The initial pair {XO,YO} must have the

bivariate Gamma distribution associ:ted with the stationary
Markovian process.

; Now we address the cross correlation between {xn} and

{Y_}. Start with II.D.4.1. We have
79
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and

XnYn-l = ann-lYn-l + annYn-l'

Using the independence of {Cn} and {Gn} and that of Y, and

Gj and Cj when j > i and taking expectations

E(X ¥, ) = E(BE(X ;¥ ) + E(C)E(G)E(Y__ ), |

so that
- (k=g q |

E(X_Y_ ) Ehex v ) o+ & (I1.D.4.9) ‘

ayes

Now starting with II.E.4.2, we have

n n n-1 n’n

ST o T £ RSN TS MV

XnYn = DnYn-lxn + Fnann'

o a4 i oh g B e <t

Taking expectations as above

E(X Y ) = E(DEX Y, ;) + E(F)E(GX ). il
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2
Using 11.D.4.3 we deduce E(ann) = E—%g so that
k

2
- (k-x r, k™+q
E(XnYn) = % )E(ann_l) + (k)( k2 ). (IT.D.4.10)
Invoking the second-order stationarity of the {xn,Yn} se-
guences, using II.D.4.9 and I11.D.4.10 and letting w = E(XiYi)

and z = E(XiYi~l)' we have the two equations

2
w o= K5+ @ (5]-(%‘1), (II.D.4.11)
z = Ew+ (I1.D.4.12)

Using II.D.4.12 to substitute for z in II.E.4.11 yields

€
)

2
k-r, . k- r, k°+
EDIEDw + 1+ (@ (——qkz )

2 . - 2,
[k krqu+qr]w + (k g)q + {k ;q,r

k k k

When E(XnYn) is substituted for w after simplification, this

produces

2 2
_  kTg-kgr+k“r+rg
E(XnYJ = K(kq+kr=qD)  ° (IT1.D.4.13)
Hence
rq
COV(xn'Yn) k (kq+kr-qr)
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and

1
CORR(X,,Y ) Kg+kr-gt ' k>0, 0<gc<k, 0 <r <k

(IX.D.4.14)
(l-ox)(l-oY)
(l-ox)+(l-oy)oX

(l-ox)(l-oY)
= — — . (I1.D.4.15)
(1 pyl+ (1 ox)oY

This latter expression follows since for a given k the corre-

lation structure is parameterized by r and g or equivalently

Pribenpy et o

by the serial correlations Py and Py given at II.D.4.3 and

II.D.4.6.

We can now substitute II.E.4.13 into D.E.4.12 to

solve for E(X Y _,).

D RN LT TR £ AT TP RARYw AT e

2 2
- k-qg, [k "g-kgr+k“r+xg q
E(ann-l) ( k ) k (kg+kr-qgr) 1+ k
- k3q+k3r+qu—k2qr-g?r
kz(kq+kr-qr) A
E
Hence,

qu-qzr
k2 (kq+kr-qr)

cov(X .Y ;) =

i M g T TN < 1 AR 2

and

= gr k-g -
CCRR(X _,Y _;) (ggvkr=gr "% CORR(X_ Y )oy (II.D.4.16)
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Continuing in this vein produces the general formula

)

CORR(X_,Y¥_ gxr )(k;:q)m (II.D.4.17)

-m (kq+kr-qr

m
CORR(X Y)py, n>m> 0.

Solving for correlations where the {Xn} lags the
{Yn} seguence is similar to the above process, but somewhat
abbreviated. Starting with II.D.4.2,
¥ = DnYn-l + FnGn'
we have

Ynxn—l = Dnyn-lxn-l + Fnann—l
Taking expectations as before gives

E(Y,X__}) = E(D)D(Y,_ X ;) + E(F)E(G)E(X ;)

Using the second-order stationarity of {Xn} and {Yn},

E(Y _1X,.1) is known from II.E.4.13, so
E(Y X ;) = <5§£)<k29‘qu*k2r*r9) + £
n"n-1 k [kg+kr-gr] k
- k3q+k3r+kgr—k2q£-qr2

kz(kq+kr-qr)
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Hence,
kar- 2
cov(y,,¥ ;) = ——azdf
k“ (kg+kr-gr)
and
qr k-r, _
CORR(Y, /X, 1) (kq+kr-qr)( x ) = CORR(X Y, )oy.

Further computations of this nature produce the
general formula
k-r.m

- qr
) = gGgEke=qr O

CORR(Y_,X _.

0; k> 0; 0 <g < k;

CORR(X,,¥)oy 0 >m

|v

0 <r

| A
.

To examine the correlation further, note that if

Oy = Py = 0 then II1.D.4.15 yields
- 1-0

Thus if o = 0 (i.e., the {Xn} and {Yn} processes are iid
sequences), this correlation is one. For {Xn} and {Yn} to
be iid, we must have Xn = Gn = Yn. Therefore, this limiting
correlation does make sense and suggests that perhaps a bi-

variate Gamma should be used as the innovation process. This
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; would allow for separate control of the serial correlation
(auto-correlation) and cross-correlation of the {Xn} and {Yn}
sequences.

~

Y, ~ Y, _1), the effect of

If o>~ 1 (i.e., X, ~ X1 Y,

. the innovation sequence is slight and the cross-correlation
between {Xn} and {Yn} goes to zero. In a more complicated
b . model than we have addressed here the cross-correlation may

4 be controlled by imposing a correlation on the {Bn} and {Dn}

 ‘ sequences. i
Cross-coupled processes, as discussed in Gaver and
Lewis [Ref. 2], are possible. These can be used to create }
negative serial correlations in the {Xn} and {Yn} processes. |
. E. NUMERICAL CONVERGENCE OF THE MAXIMUM LIKELIHOOD COMPUTER
PROGRAM AND SIMULATION STUDY OF PROPERTIES OF ESTIMATORS
The program described in Section II.B.4 for computing the
conditional density function in the GLARl process was used
in two fashions. First, it was tested by using computer ?
generated data from a GLAR(l) process with known parameter
values k, g, and u. Simultaneously a simulation of properties

* ~ ~ .
-of m.l.e 's k and q for k and q was conducted. Second, it was i

used to estimate the parameters in the GLAR(l) model for real

wind speed data. Only the first use is covered in this section.
The second use is addressed in Chapter IV, Preliminary Data

Analysis.

Four aspects of the program were addressed in the use of

i the program with simulated data. These were: sensitivity

of the maximum seeking method to start point, the size of the

*maximum likelihood estimate
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standard deviation of the m.l.e and moment estimates of k and

g produced, and the degree of bias, if any, in the estimates.
In addition, normality of the distributions of the estimates
was investigated using normal plots and Shapiro-Wilks tests.
Because of the large computation time involved in obtain-
ing a m.l.e.” the simulation study was small. Three types of
data generated from GLAR(l) processes were used to exercise the
program. Each type of data consisted of ten independent sets
(replications) of 1000 data points each. The k and g values and
the correlation were varied from one type of data to another.
Thus the first type of data was generated with a k value of
4.0 and a g value of 1.0. These parameter values produce a
correlation of 0.75 (see equation II.B.2.1). The second type

of data varied the correlation, but retained the same k wvalue.

Ak of 4.0 and a q of 3.0 produce a correlation of 0.25. These

values were used to produce data sets of the second type.
The third type of data returned to a high correlation, but
used a small k value. The parameter values used to generate

this data type were a k of 0.75 and a g of 0.1875. These

"values also produce a correlation of 0.75. Table II.E.1l

summarizes these cases. In all cases, Y = 1.

TABLE II.E.l

CASE k g e
1 4.0 1.0 0.75
2 4.0 3.0 0.25
3 0.75 0.1875 0.75

*maximum likelihood estimates
86
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| The Gamma variates were generated by the program LLRANDOMII

i (Ref. 16] and all runs were performed on the NPS IBM/3033
computer. ;

) To test the sensitivity of the maximum likelihood computer
program to the starting point of the search for a maximum,

i each set of data was used in two runs of the program. The

first run used the actual parameter values k and q as a start

A point. The second run used the moment estimates k and & of
the parameter values (see equations II.B.4.15 and I1.B.4.16) as
a start point. The resulting m.l.e.* parameter estimates i and
; were recorded.

. The first case had k = 4.0 and ¢ = 1.0. The results of i
the computer runs are presented in Table II.E.2 for data of {
the first type. The last column presents the two-dimensional

" distance in the (k,q) plane between the estimates produced by

the two different start points for each data set. Aalthough T

the values do not differ widely, the relatively large differ-

ences in some cases indicate that the likelihood function is
relatively flat near the maximum.

However, there is another factor which may be contributing
to differences in final parameter estimates. The calculation

! of the likelihood function for 1000 data points requires the

numerical evaluation of 999 integrals (see eguations II.B.4.2 ﬁ
' and II.B.4.3). The IMSL routine DCADRE was used for this

evaluation. Two of the parameters in the call to DCADRE are

*
maximum likelihood estimates.
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Data
Set

TABLE II.E.2

Results of Search for Maximum Likelihood Estimates
in a GLAR(l) Model; k¥ = 4.0, g = 1.0

Starting Value Run Time Nunber of Ending Value Maximum
X a - :

k a (in Min.) Iterations Likelihood
4.000 1.000 20 6 3.668 0.882 -214.479
2.884 0.538 129 17 3.624 0.886 =-214.488
4.000 1.000 19 2 4.004 0.979 -=204.819
4.235 1.101 46 5 4,014 0.983 -204.820
4,000 1.000 104 14 3.451 0.869 -260.332
3.360 0.805 112 14 3.440 0.867 =-260.333
4.G00 1.000 16 2 3.977 1.051 -206.416
3.767 0.947 71 15 3.955 1.041 -206.418
4,000 1.000 52 5 4,246 1.232 -304.365
4,423 1.233 45 6 4,254 1.235 -304.366
4.000 1.000 47 3 4,061 0.998 -211.074
4,647 1.187 27 4 4,122 1.028 -211.060
4.000 1.000 61 4 3.593 0.891 -229.087
3.387 0.782 55 9 3.565 0.883 =229.092
4.000 1.000 37 5 4,041 0.973 -241.637
4.421 1.069 82 7 4.051 0.974 -241.636
4.000 1.000 37 6 4.024 0.999 -240.432
3.927 0.856 24 8 4,106 1.033 -240.424
4.000 1.000 51 3 4.109 1.054 =255.245
4.398 1.112 38 5 4.174 1.081 -255.229

88

Value of
Difference
(1079)

46

10

11

24

68

29

10

88

70




the relative and absolute errors allowed for this calculation.
Practical considerations of computer run time dictated rela-

4 for each of these parameters.

tively large values of 10~
This error when applied 999 times in the calculation of the
likelihood function may have lead to the differences in m.l.e.
parameter estimates. As a test of this hypothesis the data

set which produced the largest distance between the pairs of
estimates (data set 8) was rerun with DCADRE error parameters
set at 10_10. The run which used the actual parameter values
as a start point ran in 171 minutes and produced estimates of:
ﬂ = 4.102, a = 1.031. The run which used the moment estimates
as a start point was terminated after 404 minutes CPU time. At
that point it had estimates of: ﬁ = 4.088, & = 1.025. The
distance of 15 x 10-3 represents a significant reduction in

the previous distance of 88 x 10-3. It seems from this exam-
ple that the program can be made less sensitive to the starting
point by increasing the accuracy with which DCADRE computes

the integrals in the likelihood function. Of course, a con-
siderable increase in computational cost is incurred. This
cost is not practical in these simulations or necessary since

only a rough idea of the properties of the estimates was sought.

The results of the runs for data type one are also presented

in Figure II.E.l. First, each pair of estimates, (i,&) and (k,q)

is plotted in the k,qg plane. Then each point is projected
along each axis to more conveniently reflect the marginal

variation in the estimates for each parameter.
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When k = 4.0 and g = 1.0, the method of moments produces

estimates for k with a sample mean of 3.94 and a sample

standard deviation of 0.55. The statistics for the estimates

of @ are a sample mean of 0.96 and a sample standard deviation
of 0.21. The maximum likelihood method produces estimates of
k with a sample mean of 3.93 and a sample standard deviation
of 0.27. The values for q estimates are a sample mean of 1.00
and a sample standard deviation of 0.11]. Although the method
of moments and maximum likelihood method do not produce signi-
ficantly different values for the mean of the estimates of the
parameters, the lower estimated standard deviation for the
likelihood method makes this technique more desirable from
the standpoint of precision. No bias was evident in either
estimation technique with the precision attained in the

simulations.

LT T © T A g i

The second case was the low correlation case with k = 4.0

T

and g = 3.0. Here the distinction between the two estimation

Papvasaremyntehy

procedures is not as clear (Table II.E.3 and Figure II.E.2).
The method of moments produced estimates for k with a sample

" mean of 3.99 and sample standard deviation of 0.17. The esti-
mates for g had a sample mean of 2.97 and sample standard
deviation of 0.18. The maximum likelihood method produced
estimates of k which had sample mean 4.00 and sample standard
deviation 0.16. The g estimates had a sample mean of 2.99

and sample standard deviation of 0.17. It is clear that neither

method of parameter estimation enjoys a distinct advantage
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" TABLE II.E.3

X Results of Search for Maximum Likelihood Estimates
; in a GLAR(l) Model; k = 4.0, g = 3.0

' Value of
, Data Starting Value Run Time Number of Ending Value Maximum Difference
: Set k g  (in Min.) Iterations k q  Likelihood  (10-3)
| ) 0 4.000  3.000 38 6 4.078 3.187 =-620.637 .
s 0 4.019 3.271 25 5 4.085 3.192 -620.637
L 1 4.000  3.000 23 4 3.780 2.934 =-655.488 5
¢ 1 3.718  2.843 26 4 3.775 2.931 =~655.489
' 4.000 3.000 40 3 3.789  2.765 <~663.886 3
b 3.912  2.862 27 5 3.789 2.762 ~663.886
3 4.000 3.000 44 7 4.321 3.132 -585.776 5
' 3 4.000 3.116 50 4 4.316 3.130 -585.774
4.000 3.000 44 4 4.166 3.403 -604.719
. 3.958  3.174 68 6 4.152  3.385 -600.715 22
!
4.000  3.000 27 6 3.890 2.904 -638.667
4.001  3.048 13 4 3.885 2.902 -638.666 3
4.000  3.000 43 3 4.051 2.873 =599.581
4.221  2.902 49 5 4.049 2.878 =-599.581 3
4.000 3.000 23 2 3.954  2.934 -627.062
4.079  3.074 16 7 3.963 - 2.941 =-627.058 Cu
4.000  3.000 21 4 3.917 2.898 -637.234
3.708  2.633 32 6 3.908 2.891 -637.233 1
5 4,000 3.000 15 2 4,111 2.924 -590.563
j 9 4.093  2.906 43 2 4,121 2.934 -590.562 14
i
¥
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over the other with respect to precision or accuracy. How-
ever, the method of moments is considerably cheaper with
respect to computation time required. This is consistent
with known results that for i.i.d. Gamma data (k = g), the
< moment estimate for k is quite efficient when compared to
the maximum likelihood estimator.

R Third case (k = 0.75, q = 0.1825). The third type of data
was a high correlation case with a low k value. Specifically
k =0.75, g = 0.1825, and the correlation was 0.75. As can

be seen in Figure II.E.3 and Table II.E.4, both the methods of

4
) . : .

. parameter estimation considerably overestimated the parameter
] values, indicating considerable bias in the procedures. The
LE method of moments produced estimates for k with sample mean

of 0.8061 and sample standard deviation of 0.067. Those for
q had a sample mean of 0.232 and sample standard deviation of
j 0.026. The likelihood method produced estimates for k with a
sample mean of 0.852 and sample standard deviation 0.039. The
corresponding statistics for g estimates are 0.224 and 0.004.
As was true in the other high correlation case, the standard
! . deviations of the maximum likelihood estimates are consider-
ably smaller than those of the moment estimates. However,
since the evidence is that the estimates are highly biased,
the advantage of this smaller standard deviation is not clear
i unless additional data would serve to reduce the apparent
bias. The detailed results for this data type are presented

in Table II.E.4 and Figure II.E.3. It would be of interest
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TABLE II.E.4

b : Results of Search for Maximum Likelihood Estimates
i in a GLAR(l) Model; k = 0.75, g = 0.1875

B Value of
. Data Starting Value Run Time Nuber of Ending Value Maximum Difference
Set K g (in Min.) Iterations ~ k q  Likelihood  (10-3)
0.7500 0.1825 85 5 0.861 0.221 325.685 5
0.9795 0.2489 136 4 0.863 0.222 325.685
0.7500 0.1825 59 4 0.852 0.235 866.216 0
0.8026 0.2351 19 1 0.832 0.235 866.214
2 0.7500 0.1825 72 4 0.806 0.224 439.198 1
0.7621 0.2147 66 4 0.807 0.224 439.198
0.7500 0.1825 141 2 0.866 0.222 1131.684
3 0.7514 0.2213 121 1 0.866 0.222 1131.671 0
0.7500 0.1825 59 4 0.807 0.223 2333.130
0.7749 0.2420 54 5 0.807 0.222 2333.131 1
0.7500 0.1825 59 4 0.910 0.217 883.801
0.8336 0.2320 210 4 0.910 0.217 883.801 0
0.7500 0.1825 129 8 0.885 0.222 287.798
0.7308 0.1790 88 4 0.884 0.222 287.799 1
0.2500 0.1825 71 5 0.795 0.223 977.265
0.7759 0.2241 117 8 0.795 0.223 977.265 0
; 8 0.7500 0.1825 66 6 0.906 0.227 1018.470
} 8 0.8092 0.2863 136 6 0.906 0.227 1018.472 0
!
’ 0.7500 0.1825 57 4 0.818 0.212 410.842
0.8335 0.2347 85 3 0.852 0.225 411.703 36
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to see if a technique such as (2-fold) jacknifing, such as
that applied by Quenouille [Ref. 17] to correlation estimates,
would help here.

A much larger study would be needed to come to definite
conclusions about the efficiency of maximum likelihood esti-
mation in this model. However, as in the i.i.d. case for
Gamma variates, m.l.e.'s are likely to be considerably better
than moment estimations for values of k less than one.

Note too that the maximum likelihood estimation did not
include the mean value parameter. This could be done or the
mean could be estimated from the sample mean X. The inflation
of variation of X due to the correlation is known to be

{asymptotically)

e~ 8
~
|
©

Thus for o = 0.75, the effective sample size for estimating
1 in a sample size of size n is n(l-p)/(l+p). For p = 0.75
this is n/7.

The normality of the estimates was investigated with normal
plots and Shapiro-Wilk tests for normaliity. A summary of
results if given in Table II.E.5. The normality hypothesis
is accepted at a 0.95 level if the Shapiro-Wilk statistic W
is higher than 0.842, at a 0.99 level level if it is higher

than 0.781. No strong indication of non-normality is indicated

in any case.
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III. MOVING AVERAGE MODELS

A. INTRODUCTION

Although several researchers have proposed models for
correlated, marginally exponential random sequences [Refs. 18,
19,200, Gaver and Lewis [Ref. 2] produced the first analytically
and computationally tractable model for the generation of
correlated, marginally Exponential random sequences. They
showed that in the usual linear, additive, first-order, auto-

regressive equation

X = B8X + E (III.A.1)

where {xn, n=20,1,2,...} is a second-order stationary,
marginally Exponentially distributed sequence of random varia-
bles; {En, n=1,2,...} is an independent, identically dis-
tributed (iid) sequence of innovative random variables;

0 <3 <1, the distribution of the {E } which produces the

desired marginal distribution for {Xn} is

‘0 with probability 3,
E = (III.A.2)

n lEn with probability 1-8,

where {En, n=1,2,...} is an iid sequence of Exponentially
distributed random variables with the same parameter, 1A, as

the {Xn} sequence. Equation III.A.l can now be written as
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with probability B8,
X =I (IIT.A.3)

n~-1F En with probability 1-8.

If {In' n=1,2,...} is an iid binary sequence independent of
{Xn} and {En} such that P(I =0) = 1-P(I =1) =8, then

equation IITI.A.3 can be more succinctly written as

X = BX

n n-1 ¥ I,E,- (IIT1.A.4)

Xn is a random linear combination of identically distributed
random variables in the sense that the variable En actually
enters into the sum only when the random variable In has value
one. Since for a given {In} sequence, the distribution of xn
depends only on the distribution of Xn—l and En' Xn will be
Exponentially distributed whenever both Xn-l and En are inde-~
pendent and have the same Exponential distribution. This
understanding allows the autoregressive relation in III.A.4

to be transformed into a moving average by substituting another
innovative random variable for the X,-1 to produce

X = B3E_ + IE (III.A.5)

n n n+l-°

This model was designated the EMA(l) for Exponential moving
average of order one. This EMA(l) model is one dependent in
that Xn and Xn+j are independent for j # *1. Consequently,
only the lag one correlation, Py = oy = CORR(xn'xn+l)' or more
completely only the joint distribution of Xn and Xn+l need be

studied.
100




Lawrance and Lewis [Ref. 5] give a fairly complete des-

cription of this EMA(l) model. Of particular note is the
relative tractability of this model which enabled the authors
; to derive correlations, distributions of sums of Xn's,
intensity function, spectrum of counts, joint density of

Xn and X conditional expectations, and other properties.

n+l’
The existence of these characteristics is beneficial in data
analysis and is a primary advantage of the EMA(l) over pre-
viously suggested models. However, the EMA(1l) model does

possess a limitation. The range of possible positive correla- :

tions, Pys is restricted to the interval from zero to one-

e

quarter. Thus for a given correlation between zero and

.

one-quarter, the structure of Xn and Xn+l and the sample path
behavior of the sequence are determined.

The structure of III.A.l is that of a special random linear
combination of Exponential random variables to given an Exponen- ;1

tial random variable. Other such random linear combinations

@ are now known and for the first-order autoregressive case

produce dramatic differences in sample path behavior of the

- sequence {Xn}. In this section of the thesis we investigate
these random linear combinations in the context of the first-
order moving average structure.

In this Chapter we examine extensions of the model in four
ways:

1. Negative Correlation

McKenzie [Ref. 21] has suggested a scheme for inducing

negative correlation in the EMA(l) process by correlating the
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sequence {In}. A better scheme, in that it produces a larger
range of negative correlations, was introduced by Lawrance

and Lewis [Ref. 8] for the extended first-order autoregressive
model NEAR(1l). This scheme involves a bivariate error se-
qguence {En’EA} and its use is investigated in this thesis for
the moving average process.

2. New Exponential Moving Average Model of Order One,
NEMA (1)

It will be shown that no first-order moving average
process which is a random linear combination of Exponen;ial
random variables can have correlation greater than one-guarter.
Thus the differences in the processes for given correlation is
investigated in terms of the joint structure of Xn and Xi+1°
The NEMA(l) process obtained by using the NEAR(1l) structure
[Ref. 8] in a moving average context is analytically tractable
and quantities such as the joint Laplace-Stiltjes transform

of Xn and X the spectrum of counts, P(Xn+l >Xn), and condi-

n+l’
tional expectations are obtained. It also combines the forward

and backward EMA(l) models as extreme cases and is thus a

natural extension of the EMA(l) model.

3. The Moving Minimum Model

A non~-linear combination of Exponentials involving
minima has been applied by Tavares [Ref. 22] to obtain a first-
order autoregressive process which is intimately connected
(Ref. 23] with the EAR(l) process of Gaver and Lewis [Ref. 24].
This structure is applied to the moving average process. It

is shown that this process extends the range of attainable
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correlations in first-order "moving average" process beyond
that obtainable by random linear combinations of Exponentials.
However, the process is slightly degenerate in that there is

a positive probability that successive points will lie on the
lf;e Xn+}x= bxn for positive correlations and on the curve

e " +oe n+l _ 1 for negative correlations. The price paid
for the extended range of correlations is a limited analytical
tractability as compared to the EMA(l) or NEMA(l) processes.
The moving minimum process is investigated in terms of the

joint structure of Xn and X4 Although the joint distribution

l.
can be derived, the functions are difficult to examine in
detail. Therefore, simple characterizations of the joint
structure, in addition to the correlation, are examined. These

include the P(Xn >xn), a crude measure of the tendency of

+1

the sequence to exhibit runs up and down, and conditional
3 ‘ = l =

expectations, E(Xn'xn—l x) and E(Xn-l'xn Y.

4, The Beta-Exponential Model

Finally, another random linear combination of Exponern-

tials to produce correlated Exponentials is examined. Unlike

- the previous models, the coefficients of the Exponential random

variables are themselves continuous random variables. This in-
creases the complexity and reduces the analytical tractability
of this model. Simple sample path characteristics are derived

or simulated. These are special cases of the GIMA(l) from Chapter II.

B. NBEGATIVE CORRELATION IN MOVING AVERAGE MODELS
The problem of non-negative correlations was addressed by
McKinzie [Ref. 21] who modified the form of the EMA(l) model to be:
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X, = BE + (1-2)E_,, (I1I1.B.1)
where {En, n=20,1,2,...} is an iid sequence of Exponential
random variables, {Zn, n=1,2,...} is a sequence of binary
random variables with P(Zn==l) =1 - P(Zn==0) = B, and Zn

is independent of all En and all past Xn' By imposing an
MA(l) correlation on the segquence {Zn}, McKenzie was able to
produce a negative correlation for the {Xn}. However, this
negative correlation is achieved at the cost of reducing the
possible range of positive correlations for the {Xn}. Using
McKenzie's formulation, the range of correlations obtainable
with the EMA(1l) model is (—é&,f@).

An alternative procedure for producing negative correla-
tions was introduced by Lawrance and Lewis [Ref. gl]. Their
procedure requires two series of innovative factors {En,
n=20,1,...} and {EA, n=20,1,...} which are correlated and
may be antithetic.

Antithetic variables are generated by using the fact that

the wvariables Ei and Ei defined as:

El = "ln(Ui)l
(III.B.2)
' = - -
where {Ui, i=1,2,...} is a sequence of uniform (0,1) random

variables, are both marginally Exponentially distributed and

correlated. P.A.P. Moran ([R3ef. 25] has determined that the
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correlation between Ei and Ei is approximately -~0.6449
and this is the lowest correlation possible between
Exponential random variables. Ei and Ei have a deterministic

relationship since

(III.B.3)

Using the Lawrance and Lewis extension of the EMA(1)

process, the model becomes

X =

n (III1.B.4)

+ )
BE, + IE' .,

where {En, n=1,2,...} is an iid sequence of Exponential

‘random variables, {Eé, n=20,1,...}) is a sequence of Exponen-

tial random variables which are correlated with the respective
variables in the {En} sequence, {In, n=1,2,...} is a sequence
of independent binary random variables with P(In==0) =1 - P(In
=3, 0<3 <1, and {In}, {En} are independent of each other
and all previous Xn values.

The correlation of the X's can then be computed as follows.

Let E(X) = p and recall that since {Xq} and {En} have the
same marginal exponential distributions, VAR(Xn) = VAR(En).
= . L
Xn+lxn [BEn+l'+In+lEn][BEn4'InEn-l]
2 ) 1) L} 1
3 En+lEn+BIn+1EnEn+BInEn+lEn-l+In+lInEnEn—l'
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Thus, using the independence of {E_}, {In}, and the iid nature

of {En} and {In}

E (X ) = 8%u%+8(1-8) [cov(E L) +u?1+8 (1-8) u2e (1-8) 22

n+lxn

2 '
u® + 3(1-B)COV(E_,E})

Therefore,

COV(Xn+1,Xn) = B(l-B)COV(En,Eﬂ)
and using VAR(X) = VAR(E)
CORR(Xn+l,Xn) = S(l—B)CORR(En,EA) (III.B.5)

Using Moran's result [Ref. 25] the correlation of antithetic
Exponentials is known to be approximately -0.6449. Therefore,
the greatest negative value that can be achieved for CORR(Xn+1'Xn)
is approximately -0.1612 when 8 = 0.5. Since no restriction
was placed on CORR(En,EA), the sequences {En} and {EA} need
not be antithetic, but can have any correlation that is possi-
ble for two Exponential sequences with the same marginal dis-
tribution. By specifying that EA = E_, the original EMA(1)

is achieved and the correlation for the X's is B8(1-8) as in
Lawrance and Lewis [Ref. 5]. By allowing the correlation be-
tween the {En} and {Eé} sequences to vary from -0.6449 to

1.0, the correlation of the X's will vary from a minimum of
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-0.1612 to a maximum of 0.25 (also depending on the value of
8) as can be seen from III.B.5. The Lawrance and Lewis exten-
sion of the EMA(l) model gives greater possible variation in
the correlation than that of McKenzie, but requires two se-
quences of Exponential random variables to achieve this range.
Although it is clear that with EA =E , a CORR(En,EA) =1
and when {En} and {EA} are antithetic CORR(E_,E!) = -0.6449,
it may not be obvious how to generate {EA} sequences with
correlations between these two extreme values. A simple bi-

variate exponential sequence with any desired correlation in

the permissible range can be generated using the relationship

‘ E. with probability p,
B! = ( (III.B.6)
E. with probability l-p,

where Ei is the antithetic of E.. Then the extended EMA(1)
model has two parameters, 3 and p, and the range of correla-
tions for the X's is -0.1612 to 0.25, as above. The bivariate
density for the pair {Ei’Ei} is not smooth. Other bivariate
densities such as those in Gaver [Ref. 26] and Lawrance and
Lewis [Ref. 27] can alsc be used.

The above ideas on extending the correlation structure of
the moving average models to encompass negative correlation
can be applied to all of the new models given below. Details

are not given.
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C. THE EXTENDED EMA(l) MODEL, NEMA(1l)

l. Introduction

The original Exponential moving average process is
discussed by Lawrance and Lewis [Ref. 5]. This paper

considers the first order process defined by:

‘ BEn with probability 8,

X =

n (III.C.1)

l aEn + Eqpy with probability (1-8),

where {En, n=20,%1,2,...} is an iid Exponential sequence and
0 <8 < 1. This random linear combination of Exponential
variates is called the EMA(l) model for Exponential moving
average of order one. Since Xn is a function of En and En+l’
thls version is called the forward EMA(l). The backward
version of EMA(l) is obtained when En+l is replaced by En—l
in III.C.1.

The fact that EMA(l) is a single parameter model sug-
gests that this model may not be sufficiently flexible to

address all processes. Investigation of an alternate, two

vparameter model may indicate that a two parameter model is

sufficiently more flexible to justify its increased complexity.
The extended, two parameter model is based on the new
Exponential autoregressive process of order one (NEAR(1l)).

The NEAR(1l) model propounded by Lawrance and Lewis [Ref. 8]

is defined as
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‘ En + an—l with probability «
X =

n
l En with probability (l-a)

(I1I1.C.1.2)

where {xn, n=1,2,...} is a second-order stationary sequence

of Exponential random variables with parameter A, {En} is an
iid sequence of innovative factors, 0 <8 <1, 0 <a <1, and
a+f < 2. By letting ¢X(s) and ¢€(s) denote the Laplace-
Stieltjis transform of X and £ respectively, Lawrance and Lewis

determined that ¢ (s) = %:if : X¥TIia)QS' Using a partial

fraction solution technique to invert this transform produced

. 7 1-8
‘ En with probability m
3 = (I1I1.C.1.3)

_ . Ly a8
l (l Q)BEn with proba.blllty m.

where {En, n=20,1,2,...} is an iid sequence of Exponentially

distributed random variables which has the same parameter as

the {Xn} sequence.

By noticing that the autoregressive model given in

II1.C.1.2 using III.C.1.3 is a random sum of two iid Exponen-
tially distributed random variables, the NEMA(l) model is
produced by substituting En-1 for X1 in the NEAR(1l) mcdel.
This procedure is identical to that used to produce the EMA(1)

model from the EAR(1l) model and yields

with probability @,
Xn = I (ITI.C.1.4)
13 with probability l-a.
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This model can be written in a more compact form as

X, = KE + IE ., (III.C.1.5)
where {Xn, n=1,2,...} is a second order stationary sequence
of marginally Exponentially distributed random variables;
{En, n=20,1,...} is an iid sequence of Exponential random
variables with the same parameter as the {Xn} sequence;

{In, n=1,2,...} is an iid sequence of random variables with
P(In==B) = 1-P(In==0) = a; {Kn, n=1,2,...} is an iid se-~-
quence of random variables with P(Kn==1) = l-P(Kn==(1-a)8) =

1-8 . ; .
=T=a7%’ (In}, {Kn}, and {En} are mutually independent;
0 <a <1; 0 <8 <1l; and a+B < 2.

The NEMA(l) model contains both the forward and back-

ward versions of EMA(l) as special cases. When a = 1;
P(In==8) =1, (l1-a)B8 = 0, and P(Kn==0) = 3. Hence, the

NEMA (1) model becomes

with probability B8,
X = (II1.C.1.6)
I 8E + E with probability (1-8).

This is a form of the forward EMA(l).

When 38 = 1; P(In==l) = 3, (l=-0)B = (l-a), and

aB - .
I=I=a3 1. 1In this case, the NEMA(l) model

[

P(Kn= (l-a))

becomes
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s (l—a)En with probability (l-a),
Xn = l (I1I1I.C.1.7)
(l—a)En + En-l with probability a.

This is a form of the backward EMA(l) with 8 = l-a. There-
fore, the NEMA(1l) contains the special cases of EMA(l) when
a and B assume specific values.

One should also note in passing that the {Xn} sequence

becomes an iid sequence if a = 0 or 8 = 0.

2. Correlation Structure

The following relationships will prove of value in

succeeding calculations

P(I_=8) =1 - P(I_=0) = a. (III.C.2.1)
E(In) = B + (l-a)-0 = aB. (IIT1.C.2.2)
P(K,=1) = 1-P(K_= (1-a)8) (11I.C.2.3)
= 1-8
I=(I-a)R"

1-5 aB

E(K.)

l-B+a82-a262
1-3+af

l-8+a3-a8+a82—a232
1-8+aB

1-8+a8 _ a8 (1-8+aB)
I-3+ag l-g+aB
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E(K)) = 1l-aB (III.C.2.4)
X, = KgE +I1E_, (III.C.2.5)
E(X)) = E(KE +IE ;) (III.C.2.6)

= E(KnEn) + E(InE )

n~-1

= E(K )E(E)) + E(I )E(E_,)

= (l-aB)E(En) + aBE(E,_4)

E(X) = E(E)

Since {Xn} and {En} are both Exponential, E(X) = E(E) implies
VAR(X) = VAR(E). Since both {E_ ! and {Xn} have the same
Exponential parameter, without loss of generality this param-~
eter will be considered to be 1. This, of course, requires
E(X) = 1 and VAR(X) = 1.

The possible range of correlations for the NEMA(1l)

model can be determined by a simple calculation. We have

Xn = KnEn + InEn-l'
xn+l Kn+lEn+l + In+1En‘
Thus
112
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xnxn+1 = (KnEn + InEn—l)(Kn+lEn+l+In+lEn)

2
+ KnIn+lEn

K E + K

n+lxn n+lEn n+11nEn+lEn-l

+ In+lInEnEn—l

Using the independence of {Kn}, {In} and {En} and the iid

nature of these three sequences, we have

E(X X ) = (1=a8)?[E(E))% + (1-u8)aB [E(E)]?
+ (1-aB) a8 [2{E(E_) }?] + (a8)2[E(E))?
= 1 + (l-aB)aB
Therefore,
COV(X ,X i) = (l-aB)aB
and
CORR(Xn'Xn+l) = (l-aB)aB. (II1.C.2.7)

Therefore, the original NEMA(l) model has the same range
of possible correlations as the EMA(l), namely that the corre-
lations must lie in the interval [0,%]. One should note that it
is not possible to distinguish the parameters & and 8 from the
correlation, or even whether the product, x3, has a given value

or one minus that value. This is similar to the normal moving

113




—or

average model of order one where the cases ¢ and 1/¢ are
indistinguishable. In the normal case, the range of ¢ is
limited to the interval [0,1] on the basis of invertibility
[Ref. 28]. It would seem simple and convenient here to limit
af to the interval [0,£]. However, non-normal processes are
not completely determined by their correlation structure. In
fact, Jacobs and Lewis [Ref. 6 ] showed that in the EMA(1)
case, the values 8 and (1-8) can be distinguished using direc-

tional moments, E(an2 ) and E(Xix

n+l
striction on the value of af is inappropriate.

n+l). Hence, such a re-

One should also note that, since the correlation

between Xn and Xrl is zero for all K with absolute value

+K
greater than one, the first-order correlation completely

determines the correlation structure of the model.

The restriction on the range of attainable correlation
is disappointing but not surprising since it can be prowven that
any Exponential moving average process of order one generated
as a linear combination of independent Exponentials must have
a correlation that lies in the range [0,%]. The proof of

this contention follows the previous calculation closely.

THEOREM:

Assume {En, n=20,1,2,...} is a sequence of iid Exponen-
tial variables with unit mean,{An, n=1,2,...} and {Bn,
n=1,2,...} are sequences of iid random variables, and {A },

tBn}, {En} are all mutually independent. Moreover, assume the

seguence {Xn, n=1,2,...} defined by
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X, = AE +BE (III.C.2.8)

is a unit mean rxponential sequence. Now

E(Xn) = E(AnEn + BnEn_l)
= E(An)E(En) + E(Bn)E(En_l)
1 = E(An) + E(Bn) (IITI.C.2.9)

In addition, since X, > 0 for all n, both A, and Bn must be
non-negative for all n. Hence E(An) > 0 and E(Bn) > 0. It
also follows that 1 > E(A) and 1 > E(B). Now

ann+l = (AnEn-FBnEn-l)(An+1En+l-*Bn+lEn)

Therefore

E

E(Xan+l) = E(An+lAnEn+lEn + An+an n+lEn-l +

*+ Bn+anEnEn-l)

[E(3)12 + E(A)E(B) + 2E(A)E(B) + [E(B)]>

[E(A) +E(B)]% + E(A)E(B)

Since E(A) + E(B) = 1 from III.C.2.9, E(A) + E(B) = 1.

E(X_X ) = 1 + E(A)E(B)

n“"n+l
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Therefore, since E(Xn) is one, by assumption,

COV(Xn’xn+l) = E(A)E{(B)
= E(A)(l-E(A)]
and %
CORR(xn,Xn+l) = E(A)[1-E(A)] (III.C.2.10)

Since 0 < E(A) < 1, the correlation must lie in the interval
[0,%-]. Q.E.D.

The possible range of correlations can be extended by
reformating the model. We choose to do this first by using
the method devised by Lawrance and Lewis [Ref. 8] and given
in equation III.B.4. With variables and sequences defined as

in equation III.C.1.5 let {En} and {Eﬁ} be correlated segquences

and redefine the NEMA(l) as

= '
X, KB, + IEl - ‘ (III.C.2.11)

Then it follows that

>
>
\

L ]
n“n+l (KnEn'+InEn-1)(Kn+1En+l*'In+lEn

? t
Kn+lKnEn+lEn+Kn+lInEn+lEn-l + KnIn+lEnEn

1 [ ]
* In+lInEnEn—l
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Thus
E(X.X ) = (l-aB)2+ (1-aB)aB + (1-a8)aB [COVIE ,E']+1] + 082
n“n+l n’'"n
= 1 + (1-aB)aBCOV(En,EA)

and

COV(Xn,Xn+l) (l-aB)aBCOV(En,Eg)
Fina ly

CORR(xn’Xn+l) = (l—aB)aBCORR(En,Eé). (IIIC.2.12)

As described above, Moran [Ref. 25] has determined that
the range of possible correlations for two Exponentials is
(-0.6449,1.0). Thus whenaB = 0.5, the possible correlations
for Xn and X+l fall in the interval (-0.1612,0.25). This
procedure extends the range of possible correlations at the
cost of generating the additional {EA} sequence.

McKenzie [Ref. 21} has suggested that the range of
correlations could be extended by requiring that the {I_:
sequence be correlated. Using this scheme, he was able to
show that the correlations for the {Xn} sequence lies in the
interval (- éﬁ,%%). Because of the requirement of the moving
average process of order one to have zero correlation for lags

greater than one, the correlation of the {In} sequence also
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had to be of MA(l) type. It is this restriction that pro-
duces such a narrow range of correlations. A logical and
obvious extension to McKenzie's work is to require that both
the {Kn} and {In} sequences in the NEMA(l) model have a MA(1l)
correlation structure. This can be combined with the corre-
lated {E_}, {Eﬁ} scheme of Lawrance and Lewis. If this com-
bined case is carried out, the NEMA(1l) model is as follows

X = KE + IE' (III.C.2.13)

n n-n n~n~1l’
where {Kn, n=1,2,...} is a sequence of random variables
with an MA(l) correlation structure with P(Kn==l) =

- (12 _ 1-8 | _ .
1-P(R, = (1~0)8) = 1= =75’ {1, n=1,2,...} is a sequence
of random variables with an MA(l) correlation structure with

P(I_=8) = 1-P(I_ =0) = o; {En} and {EA} are correlated se-

quences with marginal Exponential distributions with unit

means; and {Kn}, {In}, and {En} are mutually independent.
Now
xnxn+1 = (KnEnq'InEﬁ-l)(Kn+lEn+l*'In+lEﬂ)
= Kn+lKnEn+lEn+Kn+lInEn+lEz'1-l"'KnIn+1EnEr’z
* Ine1tnBaBa1
So
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~ E(ann+l) E(Kn+lKn)+(l-aB)a8+(l-aB)aBE(EnEA)+E(In+lIn)
| = COV(K_, ,K )+(1-a8) %+ (1-aB)a8 |
|
- . ' 2
+(l-aB)aB [COV(En,En)+l]+COV(In+l,In)+(aB) ,
= 1+COV(K . ,K )+COV(I__;,I )+(1-aB)aBCOV(E_,E) ‘
{
i
Therefore #
COV(X ,X ) COV(K__ 1 ,K )+COV(I_,,,I )+(1-aB)aBCOV(E_,E/)
and
CORR(X_,X_, ;) COV(K_, K )+COV(I__ ,,I ) (III.C.2.14)

| +(l-a8)aBCOV(En,E$)

Although this scheme obviously extends the range of possible
! correlations, it does so at the expense of considerable com-
plexity. Considering the limited range of correlations
possible by imposing a correlation on the {In} and {Kn}

sequences, the additional complexity may not be warranted.

e et A -

If in spite of the complexities involved, one decides to in-
: duce correlations in the coefficient sequences, the NEMA(l)

because it has two such sequences will yield a slightly larger

range than the EMA(1l) model.
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3. P(Xn+l >Xn)

One of the possible advantages of a two parameter
model is the capacity for modifying P(Xn+l:>xn) and, conse-
gquently, the sample path behavior of the process while main~
taining a constant correlation. Since the correlation is a
function of a3, one can vary the values of o and 3 while
keeping the product constant. The P(Xn+l:>xn) can be calcu-
lated by addressing each of the sixteen possible combinations

of K and I values for Xn 1 and X computing the probability

+
for each combination, and weighting the probability associated
with a given combination by the probability that the given
combination occurs. A sample calculation is provided and

complete results presented in Table III.C.3.1l.

Example: We have

X = KE + IE

n nn n n-1'
Xarl = Kpu1Bper ¥ InaiEne
P(K_.=1) = 1-P(K_= (l-a)3) = ____J'_'B_._
n n I-(l-a)g’
P(In=3) = l-P(In--O) = q.
1-8 _ :
Let -3 = 5§ and consider the case where
In = 3, Kn = 1, In+l = 3, Kn+l = 1
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Since the {In} and {Kn} sequences are both iid and
independent of each other, the probability of this combination
of parameter values is simply the product of the individual
probabilities of occurrence. Hence the probability of

. 2 . .
occurrence 1s a25 . Then in this case

P(X >xn) = P(E )

0+l +3E, > E_+BE

n+l n-1

= P(E > (l—B)En+BE (II1.Cc.3.1)

n+l n—l)

Now E is independent of Y = (1-B)E _+3E__,. Therefore, the

n+l
calculation required by equation III.C.3.1 is straightforward

once the density of Y is obtained. We have, with fe (x)

~X n-l
the p.d.f. of En—l (i.e. e )

n

y
P([1-g]E +3E _; <y) = / P([l -3]E +3x < y|E _, =x)fp (x)dx
0 n-1
Y/ (1-3] ‘ (x)d
= P([1-3 <y=32x(E__,=Xx)£ x)dx
0 "“n~1 E._1
v/8
= ; o -8x =
= ‘o P(E <*—5 iEp-1 X) fg (x)ax
n-1
-3X
y/3 -%;f— -
= | (L-e > e Xax
0
v 3X
Y/B - Y/3 s ) —[x-j_,;]
= [ eFax - [ e TTe " dx
0 0
- 3 -TZ_S— y/3 —x[_l_..z_b_]
= 1-eY/3 e J e
0
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._*;.,_
P([1-8}E +BE__, <)
_ . _.-y/8_ I-8.1-8 . /P 1-28 1-8
= l-e e LFZ—B—] fo [—l-;?]e dx
4,1 _z[li:éeé]
= 1-eY/B_¢ -B[l—:—é%](l-ee )
= 1-e"Y/B_ (1-8 ‘TZ? 1-8 , _-v/8
= 1l-e [m]e +[I:'2§]e
P(Y_<_y) = = P%F[l-e_y/sl + lL:}%—(l—e IX?)

Therefore, the density function o
-Y/B+(l-8)(li- e-Y/(

1-23
2] gave the necessary

- () (e
Lewis [Ref.

for a mixed exponential of the fo

+

and A, <

2 1 2
The condition is that

T, > 1, v 1, A

1 b1
function.

| A

(1 -

In this situation we address two

1

case is when 0 < 3 < R In this

requirement is

o < L-igdp + @t
_ 1-3
T
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£y, £f,(y), is

1-8), for 8 # %. Gaver and

and sufficient conditions
-A,X -Azx
rm nlkle +v2A2e

to be a proper density

14

(I11.C.3.2)

separate cases. The first

1-3
case y—»x > 1 and the

2

-

-1
[1‘1_—5]

<




And III.C.3.2 is satisfied. The second case is when % < B8 < 1.

In this case - Ié%ﬁ > 1 and the requirement is

“rE o< - (Epnt
< -
.8
S

And III.C.3.2 is satisfied. If B = l, the density of ¥ is a
Gamma (2) density. Therefore, the p.d.f. of Y is a proper
density. This result can be used to complete the calculation

of P(Xn+ > Xn). Recall that equation IIIC.3.1 stated

1

pP(X > X))

n+l n

]

P(E ,, > (1-8)E_+BE__,)

P(E_1>Y)
By conditioning on Y and using the p.d.f. for Y derived above
this 1is

0

jOP(En+l>le=y)fY(y)dy

p(xn+l> Xn)

5

joe‘Y[-(Ié%g)(%)e‘y/8+<fi§%)(ié~)e “Play

= b

l Qo - (—B-i)
- (35 (o [ (Eilye 73
= &/ 53

day

2-8

® - =)

1, Ll-8, 2-8 =3

+ (1_23)(§:§)f0(I:§)e dy
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—————— e,
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v

e WW —
)
P(X,1> %) = - Ghp + (2 5D
P(X,,,>X) = 133 1 = (III.C.3.3)

Table III.C.3.1 presents the results of the calculations for
all of the sixteen combinations of parameter values for Xn+l
and Xn.

When the P(Xn+l> xn) was calculated for various values
of o and 8, i1t was found that the values for this probability
varied from 0.44 to 0.54. Table III.C.3.2 contains the results
of these calculations for four hundred forty-one combinations
of parameter values. Although the variation in probability is
not large, it does represent an increase over the forward
EMA(l) model. 1In particular, the forward EMA(l) model can not
produce a probability greater than 0.50. Consequently, the
NEMA (1) model not only has a greater range of possible proba-
bilities, but also can produce probabilities greater than 0.50.
The implications of this greater range is that the NEMA(l) model
can address data sample paths that have a slight tendency for
either runs of increasing or decreasing values, while the
EMA(l) can only address sample paths that tend to produce runs
of decreasing values.

Examples of scatter plots and sample paths for three
sets of parameter values and positive correlations are given
in Pigures III.C.3.1-III.C.3.6. Because of the relatively low
correlations possible and because of the limited range of
values for P(Xn+l>>xn), differences among the figures are not

124

wd




125

l TABLE III.C.3.1
K K I I Probability of P(X_..> X))
1 n ntl n Parameter Values s
Occurring
1
1 1 8 8 5% T+ =8)
1 1 3 0 sk(w =
1 1 0 0 5 2(1-n) 2 z
1 18 3 B sk’ pares
1 (1~)8 8 0 5(1~8) a(1-0) 1
1
2 1
(1) 8 0 0 §(1-8) (1= TRE
2
1 3 3 (1502 e e
1 3 0 (1)éa(lm) Yras
2
1 0 3 (1-8)8 o P
1 0 0 (1-5)6 (1m) 2 %8%2—
1
(108 8 3 857 R Y
2
(l=a)8 B 0 (1-8) “a (1=ax) 1
(1~a)3 O 8 (1-5) % (1-n) o 7%%)-
(108 0 0o 1-920-w? 3
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sharply delineated. However, differences can be detected,
particularly in the sample paths. In Figure III.C.3.1 with

an a value of 0.95 and 8 value of 0.50 has a P(Xn+ >-xn) =

1
0.44, the lowest value for this probability. Since this pro-
duces a slight tendency for runs of decreasing value, the
number of extreme values (i.e. greater than 3.0) is two.

In Figures III.C.3.2 and IIIC.3.3 the P(xn+ Xn) is 0.50 and

l>
0.54, respectively, with a corresponding increase in

the number of large values. This trend is more
difficult to detect in the corresponding scatter plots.
Figures III.C.3.7-III.C.3.12 provide sample paths and scatter
plots for the same a and 3 values as previously displayed,
but with antithetic innovative sequences (see III.B) and
consequent negative correlations. Although the negative
correlation is evident, trends in these figures are difficult
to detect. The extremes of sample path variability produced
by the NEAR(1l) process [Ref. 8] are not reproducible with the
NEMA (1) process. This may be attributable to the restricted

range of possible correlations.

4. Laplace Transform of Sums

One aspect of the EMA(l) model is its analytical
tractability. This is evidenced by the ability to derive the
Laplace transform of sums by a recursive relationship given
by Lawrance and Lewis [Ref. 5]. This tractability carries
over to the NEMA(l) process. The Laplace transform is useful
in obtaining quantities which are of use in analyzing point

processes, namely the intensity function and the spectrum of
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"NEMA SCATTER PLOT
ALPHA:0.95 BETA:0.50

= TRUE RHO: 0.25
© SAMPLE RHO: 0.°26
.2 EXTREME VALUES NOT PLOTTED
o
x:{f{';:

——— : T
3.20 4.80 6.40

FIGURE III.C.3.4
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SNEMA "SCATTER PLOT
ALPHA: 0. /70 BETA:0.95
2 TRUE RHO: 0.°22

@] SAMPLE RHO: 0.°2u
O,EXTREME VALUES NOT PLOTTED

.
.....

3,20 4. 80 5. 40 8.

FIGURE III.C.3.5
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6.40

.

NEMH SCRTTER PLOT
ALPHA:0.30 BETA:0. 90
TRUE RHO: 0. 20

SAMPLE RHO: 0.23
S EXTREME VALUES NOT PLOTTED

7 Y S YL

Y * T T
3.20 4.80 6.40
X (N)

FICURE III.C.3.6
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NEMH SCHTTER PLOT
ALPHA:0.95 BETA: 0. 50
'~ TRUE RHO:-0.16

SAMPLE RHO:-0.16
4 EXTREME VALUES NOT PLOTTED

¢

3.20 4.89 6.40

FIGURE III.C.3.10
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"NEMA SCATTER PLOT
ALPHA:0.70 BETA:0.95
TRUE RHO:-0. 14

|  SAMPLE RHO:-0.15
0 EXTREME VALUES NOT PLOTTED

6.40

y.80

X (N+1)

3.20

.60

)|

p.00

FIGURE III.C.3.11
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“NEMA SCATTER PLOT
ALPHA:0.30 BETA:0.90
S TRUE RHO:-0.13

o SAMPLE RHO:-0.1¢2
4 EXTREME VALUES NOT PLOTTED

FIGURE II.C.3.12
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-
g‘ counts. These gquantities are derived for the NEMA(l) process
o in subsequent sections from the results obtained here.
. , . 1-8 _ s
With X defined as in IiI.C.l.S, let =1I=a7% - Q-sT
and (l-a)8 = y. Further, let X; = T_ and o, (s) = E(e 5.
i=1 r
Then we have
Tr = Xl + X2 + ... F Xr (I11.C.4.1)
= KlEl + IlEO + K2E2 + IZEl + ...+ KrEr + IrEr-l
= KE_ + (I_+K_1)E_; + ...+ (I,+K)E} + I|E,
Then letting Lj = Ij+l'+Kj' j=1,2,...,r=1 and using the
mutual independence of the iid sequences {K }. {In}, {E !
-sT,
op (s) = E(e ) (III1.C.4.2)
r
-s{K E +L__.E__,+...+L,E . +I,E,]
= E(e rr r-17r-1 171 "170 )
-sK_E -sL E -sL.E -sI.E
= El(e I DYyE(e r-1"r l)...E(e 1 1)E(e 1 0)
i -sK,E, -sI.E. -sL.E.

| Now let ¥ (s) = E(e 3 3Jy, ¥ (s) = E(e 3 Jy, ¥ (s) = E(e 3y,

Then

by (8) = ¥ () ¥ (8) ¥ ()177H (I11.C.4.3)

To evaluate these quantities note that
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1 with probability §,

Y with probability 1-¢.

Then
-sK.E.
Yels) = g(e 33
-sE. -sYE.
= SE(e J) + (1-6)E(e J)
¥e(s) = 89p(s) + (1=8) o (¥S) , (III.C.4.4)

where ¢E(s) = T%E' So

S _ 4 {1-8)
1+s l+vs

y_ (s)

K (III.C.4.5)

Also

‘ 8 with probability a,

0 with probability l-o,

-sBE.

aE (e Iy + (1-a) (III.C.4.6

(111.C.4.7)
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To evaluate WL(s) note that

Therefore

?L(s)

]

?L(s)

Using the

I11.C.4.8

b, (8) =

B+1 with probability a$,

B+y with probability a(l1-6),

1 with probability (l-a)$§,

Y with probability (l-a) (1-6).

-sL.E.)
El(e 33
~-s[B+1]JE. -s{R+YlE.
aSE (e J) +a(1-8)E(e 3y
-sE ., -sYE.
+ (l-a)3E(e J) + (1-a) (1-3)E(e )

a5¢E([8+l]S)-*a(l-5)¢E([8+Y]s)-+(l-a)6¢E(s) (II1.C.4.8)

+ (l—a)(l-6)¢E(Ys).

results of III.C.4.3, III.C.4.4, III.C.4.7, and

[5$E(S)+(l-6)¢E(YS)]x[a¢E(Bs)+(l-a)] (I11.C.4.9)
x{aémE([8+l)s)+a(l-6)¢E([8+Y}s)+(l-a)6¢E(s)

+ (1-2) (1-6) v (ys) 1771
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This extends the result (3.7) in Lawrance and Lewis [Ref. 5]
to the NEMA(l) process.

5. Laplace Transform of the Distribution
of Counts

The Laplace transform of the sum is useful in deriving
the distribution of the synchronous counting process of the
number of events that occur in (0,t] when the origin is estab-
lished at the occurrence of an arbitrary event. The number
of events in (0,t] is related to the distribution of a sum by

the relationship

N < r iff T > ¢, r=12,... (III.C.5.1)

where Ni is the number of events in (0,t] and Tr is the sum
of the first interevent times. Thus
p(Nf=r) = F (t) -F_ . (t)

t r r+l

where Fr(t) is the distribution function of Tr' The proba-

bility generating function of Ni can then be written as

|
t4
N

'i’f(z,-t)

§

—-— r -
= rzoz (F (t) - F_ ()]

1]

1+ (z-1) ] 2"YF_(v).
r=1
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* *
Let ?f(z;s) be the Laplace transform of Wf(z;t), and fr(t)

the Laplace transform of fr(t), the p.d.f. of Tr' Then

vizis) = Lo 22l oy prlety, (I1I.C.5.2)

Using the Laplace transform of the sum from III.C.4.9

* - bt -
ve(z;s) = g-422) L7 Lisogis)+(1-6) 05 (vs) ]
x{u®E(Bs)+(l-a)]><[a<5¢E([B+l]S)+u(l-5)¢E([8+Y]s)
r-1
+(l-a)6¢E(s)+(l-a) (1-5)¢E(Ys)]
¥;(z;s) = é— (l;z)[6¢E(s)+(l-6)¢E(Ys)]x[awE(Bs) (II11.C.5.3) |

1
+(l-a)]xll-z[ad@E([5+l]S+a(1‘3)¢E([3+Y]S)

+(l-uhﬂh(s)+(l-a)(1-6)¢E(Ys)]

1
where oE(s) = 135°

1f mf(t) is the intensity function of the point proc-

ess, then m;(t), its Laplace transform, can be obtained by
differentiating III.C.5.3 with respect to 2z, evaluating the
derivative at z = 1, and then differentiating with respect to
s. These steps, when taken, produce a series of tedious
calculations which produce no analytical insights. The result

of these steps is
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1+ (1+48-208) s+ (38+58%-2a8-5a8 2+a282) s°
* +(282+263-3a62-3a83+a282+a263)s3
s+ (1+4R-3aB+a"B8“)s"+(3B+58"-20R-7aR"+3a“R ) s

+(282+28%-3082-3a83+0 28240 283) s?

This result can be verified in a number of ways. First, when

x = 1, the process is the EMA(l) process and, hence, the formula
must reduce to (4.2) given in Lawrance and Lewis [Ref. 5] with

A = 1. Second, when o = 0, the NEMA(l) process reduces to a
Poisson process and the formula under this condition must

reduce to the Laplace transform of the constant intensity
function of a Poisson process with rate 1, %. Third, with

3 = 0 the NEMA(l) process is again a Poisson process. Finally,

*
using one of the Tauberian Theorems, lim mf(t) = lim smf(s) = 1.

t>c s+0
We take these cases in turn. First, when a =1

1+ (1+48-2a8) s+ (38+58%-2a8-508%+a%p?) 2

+(282+4233-3082-3083+0223%+a%83) s>

*
mf(S) =
s+ (1+48-3a8+a282) 52+ (38+58°-2a8-TaB%+30%32) s 3

+(282+283-3a62-3aB3+a232+a283)s4

reduces to

1+(1+28)s+(8+62)52
s+ (L+B+8°) 8%+ (B+8%)s°

*
mf(S) =
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(1+8s) (1+[1+81]s)
s([1+s] [1+(8+8%)s])

*
mf(s)

(l+8s) (1+{1+8]s)
s(1+s>s<1+s><§T%;§T+-s)

which is the result of Lawrance and Lewis (Ref. 5] with A = 1.

In the second case with a = 0

1+ (1+48) s+ (38+58°) s+ (28°%+2873) 53
S+ (1+48) 52+ (38+582) s+ (282+28°) s°

*
mf(S)

1

El

the Laplace transform of a Poisson process with rate of 1.
In the third case 3 = 0, so

* . 1l+s _
mf(s) = =

S+ s

0l

again the Laplace transform of a Poisson process with a rate

of 1.

In the final case apply the Tauberian Theorem

l+(l+48-2a8)s+(38+532—2a6-5a82+a282)52

3

L +(28%4283-308%+028244%33) 3
lim smf(s) 33 2 2. 5 2.2, 2
s-0 1+(1+48-3aB8+0“3°) s+ (33+5R8°-2aB-7aR“+30°3%) s

+(28%+283-303%4423%40%3%) &3

1
_1-,

as required.
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6. The Spectrum of Counts

For the statistical analysis of series of events the

most useful quantity associated with a process is the

(Bartlett) spectrum of counts. The spectrum of counts,

g, (w), is the Fourier transform of the covariance density of
Nf(t). It is related to the Laplace transform of the inten-
sity function, m;(s), by the relationship derived by Cox and

Lewis [Ref. 29]
- A * . LI
g,lw) = ;(l+-mf[1w]4-mf[-1m]).

We now derive this for the NEMA(l) process using III.C.5.4.

*
In that expression fgr mf(s), let

a, = 1+ 43-2a8, (III.C.6.1)
‘ a, = 38 + 582 - 2aB- 5a82 +a282, (III.C.6.2)
!
, a; = 282 + 283 - 3082 - 308 + o282 + o283, (III.C.6.3)
i
| 2.2

b, = 1+ 48 - 3a8 + o?3%, (III.C.6.4)
? b, = 33+ 58% - 208 - 7a8% + 34%8%, (III.C.6.5)
!
t
9 by, = 282+ 287 - 3a8% - 3a8% + a%8% + o237, (III.C.6.6)

Then
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|
é

* l+als+a252+a3s3
mf(S) = f 3 a
s+bls +bzs +b3s

Recall that A = 1 so

g, w) =

g, (w) =

l+al(iw)+a2(iw)2+a3(iw)3

El

[1+
Lw+by (iw) “4b, (iu) S+b (iw) *

L+a, (-iw) +a, (~iw) 2+ay (~iw) >

]
-iw+bl(-iw)2+b2(—iw)3+b3(-iw)4

liw+b, (iw) 24b,, (1) 2+b 4 (1w) 4

x&hﬁbﬂ-m)%bﬂ-M)ﬂbg-M)ﬁ

A
I N

[iw+bl(iw)2+b2(im)3+b3(iw)4]
3

x[—iw+bl(—iw)2+b2(-iw) +b (=iw) 4]

[l+al(iw)+a2(iw)2+a3(iw)3]

x[-im+bl(-im)2+b2(-iw)3+b3(-iw)4]

[im+bl(iw)2+b2(iu)3+b3(iw)4]
Y[-iw+bl(-iw)2+b2(-iw)3+b3(—iw)4]

[l+al(-im)+a2(-iu)2+a3(-iw)3]

XIiw+bl(iw)2+b2(iw)3+b3(iw)4]

[iu+bl(im)2+b2(im)3+b3(im)4]

x[-iw+b1(—iw)2+b2(-iw)3+b3(-iw)4]
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Consider the first term with numerator and denominator the

same. Let the denominator = D.

D = [du+by (iw) 2+by (iw) >+b (1w) *1 [~iu+by (-iw) P4b, (miw) P+by (<iw) )
= w?-ibjw-bwtribwirin w+bZut-ib bw b bow®b,wt
+ib1bw +b2u®~ib b w ~ib 1w b bywb+ib, b w  +bjw®
= i(-byw +bu +b w -b byw +b byw b byw +b,ybw ~bgw®)
+(wz-b2m4+b§w4-blb3w6-b2w4+b§w6-blb3w6+b§w8)
= w21+ (b2-2b 107+ (b3-2b, by 1w +b3u®) (I1I.C.6.8)
Let
X = 1+(b%-2b,)w?+(02-2b by 4blu®,

where bl’ b2, and b3 are defined by III.C.6.4, III.C.6.5,

I1I1.C.6.6, respectively. Then

D = wX (III.C.6.9)

Consider the numerator of the second term in III.C.6.7 and

call it N2. Then
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N2 = [l+a1(iw)+a2(iw)2+a3(iw)3][-iw+bl(-iw)2+b2(-iw)3+b3(-iw)4]
2.3 4 2_. 3 4, 5 . 3
= iw blw +1b2w +b3w +alw lalblm albzw +1alb3w +1a2m
+a2b1w4-ia2b2w5-a2b3w6-a3w4+ia3blw5+a3b2w6-ia3b3w7
N2 = ji(-w+[a.—-a.b.,+b ]w3+(a b,-a,b,+a,b )ms-a b w7) (IT1I.C.6.10)
2-a1by+b, 1P3-azbytasb, 3P;3 -C.6.

2 _ _ 4 _ 6
+(al bl)u +(a2bl alb2 a3+b3)g +(a3b2 a2b3)u ,
where ays ay, agy bl’ b2’ and b3 are defined in III.C.6.1

through III.C.6.6 respectively. Consider the numerator of

the third term in III.C.6.7 and call it N3. Then

N3 = [l+al(-iw)+a2(-iw)2+a3(-iu)3][im+bl(iw)2+b2(iw)3+b3(iw)4]
= iw—blwz—ibzw3+b3m4+alw2+ialblw3-alb2w4-ia1b3m5—ia2u3
4. 5 6 4. 5 6, 7
+a2bl» +1a2b2w -a2b3w a3u 1a3blw +a3b2q +1a3b3¢
N3 = i(w-la,-a.b,+b,]w -[a.b.-a b.+abilw +a.b.w’) (III.C.6.11)
279171772 1737927279371 3%3 I

2 4 6
+{a;-bj)w +(a2bl-alb2—a3+b3)w +(a3b2 a,bilw,

where al, a2, ag, bl’ b2, and b3 are defined in III.C.6.1
through I1I.C.6.6, respectively. Note from III.C.6.7 that
all terms in the sum have the same denominator. Use III.C.6.10

and III.C.6.11 to determine the numerator of the second and
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third terms and call it N. Then

. 3 5 7 3

1[-w+(a2-albl+b2)w +(alb3-a2b2+a3bl)w -a3b3w +w-(a2-albl+b2)w

~(a;by-a,b,+azby)w +asbaw 1+ (a -b, ) wl+(aby-a,b,-a,+by)w’
1P3=azbo%aszhy 3P3 172 2P1731Py 3340,

6

a2b3)u

6 2 4 )
*(agby-ayby)w+(a;-b))uw+(ayby-a;by=as+bylw+(asb,

4 6
b -a3+b2)w +(a3b2—a2b3)w 1.

— - 2 -
= 2[(al bl)u +(a2bl a; 2

Let
(a.-b.)+(ab,-a,b,~as+b.) i+ (a b
17Py)*+(agby-a bymagyto, 1P

y =

Then

2

_a b3)m6].

(I11.C.6.12)

(ITI.C.6.13)

Using III.C.6.7, III.C.6.8, III.C.6.13
|
2 2
. 2,
g ) = FRE e 2
w X w X
= %(fégx), (ITII.C.6.14)

where x and y are

respectively.
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Figures III.C.6.1 through III.C.6.3 show the results
of the calculation of the (Bartlett) spectrum of counts. In
presenting the results the constant % in IIT1.C.6.14 was ig-
nored. Figure II1I.C.6.1 shows the spectrum of counts for the
same a and 3 values that were used for the sample paths and
scatter plots of Figures III.C.3.1 through II1C.3.6. This
figure also shows the variation in the spectrum of counts as

the P(X . .> xn) varies from its lowest to highest values.

I

Figure III.C.3.2 holds the P(Xn > xn) constant and varies

+1
the correlation. Since the spectrum of counts for a Poisson
process is a constant one when )\ equals 1 and the constant

%} is ignored, the correlation can be viewed as a measure of
the process' departure from a Poisson process. This
divergence as a function of the correlation shows clearly in
this figure. Figure III.C.6.3 holds the correlation constant
and varies the P(Xn+l> Xn). The slight variation in the
spectra shows that while the spectrum of counts does vary

with the P(Xn+ > Xq), the correlation plays a more dominant

1
role.

The analysis from the Laplace transform of sums in
I1II.C.4, through the Laplace transform of the intensity func-
tion in III.C.5, to the spectrum of counts in this section
can be performed using the correlated {En}, {E;} seguences

of I1I.C.2 and thus for negative correlatinns. Details are

not given.
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7. Joint Laplace-Stieltjes Transform of X_ and x1+l

Because the NEMA(l) process is, by construction,
only one-dependent, all of the second-order properties of

{Xn} are contained in adjacent pairs {Xn,x }. In previous

n+l

sections quantifiers of the distribution of {xn,x } such

n+l
as p, and P(Xn+l >xn) have been derived. Here we give the
Laplace-Stieltjes transform of the joint distribution. One
could, for example, study the effect of the two parameters
from this result by deriving directional moments.

The joint Laplace-Stieltjes transform of Xn and Xn+l

can be calculated by considering each of the sixteen possible

combinations of parameter values for Xn and xn+1’ as was done

in III.C.3. Let I:TIE“T‘ =35, (l-a)8 = v, ¢ (s,,8,)
$1%¥n"S2%n+1 R 1 n¥asy L2
E(e ), and ¢E(s) = T3s° Then
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$xn,x

+

+

n+l

-s, [E_+BE__,1-s,[E_ ,+BE_]
(s,,5,) = aaddE(e 10 "%n-17""2""n+l ""n

-s, [E_+BE__,1-s,E
(1-0)adSE(e 1" n " "n-17 72 n+l)

-s.,E -s, [E +8E_ 1]
a(l-0)86E(e L B 2 mtl rmy

-SE-
(1~a) (1-a) SSE(e ¥ n+l)

~-s, [YE_+8E l-s,(E +8E ]
aad (1-8)E(e 1 n n-1 2 n+l n’)

-5, [YE, +BE 1-s.E
(1-a)06 (1~8)E(e T -1'7%2%n+1,

-s,YE -s, [E +8E 1
2 (1-0)8 (1~8)E(e + O 25n+17 "0

-5,YE_-s,E
(L-a) (1-a) § (1-8)E(e 1'""n 72 n+l)
—s,[E_+BE__,1-5, [YE, 1 +8E ]
ac (1-8)SE (e 1¥n7"%n~1""72" T+l "7,

-s, [E_+BE__,)-s,YE
(1-a)a(l-8)sE(e T o ot 2" n+1,
-s,E_~-s. [YE +3E 1]
2 (1-q) (1-6)§E(e L 7 2 n+l "0,

l n SZYEn+l

(l-u)(l-a)(l-d)aE(e )

‘51[Y5n+53n_l]—sz[YEn+l+8En]

aa(l-5) (1-8)E(e )

-s [YE +RE i-s YE
(1-a)a(1-8) (L-8)E(e T n-17 727 "n+l,

-s,YE _-s,[YE__,+8E ]
s(l-a) (1-6) (1-8)E(e = » 27 177 n7y

~-s.YE_-s,YE
(1-2) (1-a) (1-8) (1-3)E(e 1'%n 72" "n+l,
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) ($.,8.) = oaaddp.(s,+8s8,)e(Bs,)e (s,)
Xn,xn+1 1’72 E'"1 2°'E 1""E*72

+ (l-a)a56¢E(sl)¢E(le)¢E(52)

+ a(l-a)66¢E(sl+Bsz)¢E(sz)

+ (l-a)(l-a)66¢E(sl)¢E(sz)

+ 3a6(1-6)¢E(Ysl+652)¢E(le)¢s(sz)
+ (l—a)aé(1-6)¢E(Ysl)¢E(le)¢B(sz)
+ a(l-a)6(1-6)¢E(Ysl+Bsz)¢E(sz)

+ (l—u)(l-a)5(1~5)¢E(Ysl)¢E(sz)

+ aa(l-6)6¢z(sl+852)¢E(le)¢E(Ysz)
+ (1-0)a(1-8) 80, (s;) 05 (Bs)) 9 (¥S,)
+ a(l-a)(1—6)6¢E(sl+832)¢E(ysz)

+ (l-a)(l-a)(l-é)SmE(sl)¢E(Ysz)

+ aa(l—é)(l—é)@E(vsl+Bsz)¢E(Ssl)¢E(Y82)

+ (l-a)a(l—@)(l-G)@E(Ysl)DE(le)¢E(YSZ)
+ x(l-a)(1-6)(1—6)93(Y51+632)$E(Ysz)

+ (l-a)(l-a)(1-6)(1-6)®E(Ysl)¢g(vsz)
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(sl.sz) = [6¢E(sz>+(l-6)¢E(vsz)]

% .x

n’“n+l

x[aadop(s,+8s,) 0p(Bsy) + (l-a)addp(s,)9p(Bs,)

+ a(l-a)6¢E(sl+Bsz) + (l-a)(l-a)5¢E(sl)

+ aa(l=-8) op(ys +8s,) 0p(Bs )

+ (l=a)a(l-8) pp(ys ) e (Bsy) + a(l-a) (1-8)¢p(vs,+Bs,)

+ (1-a)(l«n(l-5)¢E(Ysl)]

(s1,8,) = [8¢p(sy)+(1-8)op(ys,)] (III.C.7.1)

$
xn'xn+l

X[a¢E(Bs)+(l-a)]x[a6¢E(sl+852)+(l-a)6¢E(sl)

+ a(l-o)as(vsl+asz)+(l-u)(1-0)¢E(Ysl)]
For the special cases of the EMA(l) process, 1II1I.C.7.1 reduces
to the results given in Lawrence and Lewis [Ref. 5].

D. THE MOVING MINIMUM MODEL

1. Introduction

Another possible scheme that can be used to generate
one~-dependent sequences of random variables with marginal
Exponential distribution is the so-called minimum model. With
this model the {Xn} sequence is generated by taking the moving
minimum value of two Exponential random variables. The proposed

generation scheme is

X\ = MIN(E ,bE__,), (III.D.1.1)
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where {xa, n=1,2,...} is a sequence of random variables
with marginal Exponential distribution, {En, n=20,1,...} is
an iid sequence of Exponential random variables with unit
mean, and b > 0. This will produce an {Xé} sequence with a
rate of E%l and an expected value of 5§T' This expected
value produces one difficulty since it is a function of the
parameter, b. This complicates comparisons between results
with different parameter values and decreases the value of
scatter plots and sample paths. However, this difficulty
can be easily removed by multiplying the {xg} by égi. The
generation scheme then becomes

= Bl oy o b+l
X, = 2= X' = MIN(I2ERIE, [b+11E ), (III.D.1.2)

with {En} and b defined as before. The {Xn} has a rate of
one and, hence, an expected value of one. This facilitates
comparisons for different parameter values with the NEMA(1l)
discussed in III.C which produces random variables with unit
means.

The investigation of the moving minimum model is moti-
vated by the previous result in III.C.2 that linear additive
models have a constrained range of serial correlation. The
hope is that the non~linearity of the moving minimum model
will obviate this constraint. The minimum scheme has been
used by Tavares [Refs. 22 and 30] to generate first-order
autoregressive exponential processes and by Marshall and
Olkin [Ref. 31] to generate correlated bivariate Exponential
variables.
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2. Correlation Structure

The first-order serial correlation can be computed
by the following approach

b+l

E(X E([MIN([—E—]En+1,[b+l]En)]

n+lxn)

N (e, ellE__ D).

The terms inside the expected value can be made independent
by conditioning on the value of E,. The E(xn+lxn) is then
found by multiplying the conditional result by the density
of En’ and integrating. Implementing this approach we have

0o

b+l

E(X X)) = j'OE( (MIN([=5=1E ./ [b+1]y)]
X[MIN([Eglly,[bﬂ]En_l]lEm:y)e'ydy

B(X X)) = f:(E[MIN([égi]Eml,[b+1]y)]) (III.D.2.1)
x(E[MIN([E;—l]Y,[b+l]En_l)])e-de

The exrected value of the minima can be calculated as follows:

bx
(b+1)y "B+l
b+1 _ b b+l
EMINUEEDEp,ys (31D = [ X(gzp)e =~ dx
- _bx
b b+1
+ (b+1)y () e dx
(b+1)y b+1
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\

-é?% (b+l)y

b+l
E(MIN[(_E_)En+l'(b+l)y]) = =Xe .
bx
(b+l)y - _
+ e Py + (b+1)ye PY
0
bx
- (b+l)y T
= -+lye ™™ + Bl (o) e Ot
0
+ (b+l)ye-by
EMINIEENE |, (b+Liy]) = -7,
Similarly,
b+l (b+L)y/b | ~pi7
EMINU{(7)y, (b+DE ;1) = jo x(g7) e dx
- Bﬁ_
. (b+l)y, 1 ¥I
* “pLlgFpe T ax

l
!
!

(b+1l)y/b

X

-gaT| (b+1)y/b (b+1)y/b =p37
-xe ' + e

‘ dx
10 0

+

(tl)y o-y/b

(b+1l)y/b 1

= -iE%ilX e Y/P 4 (bel) (557 e

0

s o3lly oov/b

dx

(II1.D.2.2)

__X
b+1

dx

S kit ol smadiiaced o &zt




! —
! T O
i '
f
|
‘ N[ By, (b+DE 1) = (1) (1-e7VP), (III.D.2.3)
Using III.D.2.2 and III.D.2.3 in III.D.2.1 produces
* b+l by /b
= e - ¥ b4
E(X X)) = [0(—5—)<1e ) (b+1) (1-e ye Tdy
2 2
- (b;l) _ b;l - (b+l) + (b+1)
b (1+b+g)
- (b+1) 2
b2+b+1
Therefore, since E(Xn) =1
(b+1) 2 b
COV(Xn+l’Xn) = 5 -1 = 5
b"+b+1 b +b+1
and
CORR(X_,;,X ) = —5o— (II1.D.2.4)
b +b+1
; Thus the model allows a range of correlations from
[0,%]. The minimum value is achieved when b is zero or in

the limit as b tends to infinity. The maximum value is achieved
when b is equal to one. An interesting aspect of the correla-
tion structure of the moving minimum model is that reciprocal
values of b produce equal correlations. This is a similar

kind of "invertibility" found for the other moving average

models discussed in III.C. The range of b could be restricted
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to the interval [0,l] without reducing the possible range of
correlations. However, doing so, as with the NEMA(l) model,
would ignore the fact that in the non-normal case character-
istics other than correlation may be different in the case of
b and %. Also, as is the case for all the first-order moving
average processes addressed in this paper, the correlation
for lags greater than one are zero. So the study of correla-
tion structure is limited to the study of the serial correla-
tion with lag one.

3. Negative Correlation

The range of possible correlations can be extended in
a fashion similar to the NEMA(l) model (see III.C.2) by the
use of correlated or antithetic variables. Using this approach
the generation formula becomes for antithetic variables

= b+l '
X, = MIN([==IE_,[b+l]E}_;), (III.D.3.1)

where all variables are defined as in III.P.l1.1 and {Eﬂ,

n=20,1,...; is generated from the {En} sequence using the
-E
relationship Eﬁ = -1n (l-e ™). Note that this implies that

{EA} is also iid Exponential with unit mean. Again

b+l

E(X, X ,;) = E[MIN[(F=)E_, (b+1)E!_;])

n n+1l

b+1 '

and conditicning on the value of En’ multiplying by the density

l64




of E., and integrating produces

©

b+1

E(X X ,;) = jOE([MIN([—E-]y,[b+llE5_l)1
[MIN([EEi]En+l.[b+1]EA)]|En’=Y)e_
® b+l '
E(X X ) [ (EMMIN([=ly, (b+11E!_) 1)

0

(EmIN (e L,

ydy

(II1.D.3.2)

-{b+lllnll-e Y1) ])e Yay

The first expected value is identical to III.D.2.3. Thus

EMINDEED y, (+DE! D) = (b+l) (1-e7Y/P)

The second can be calculated as before.

b+1 - _aTY
E(MIN[("b—-)En+l: (b+1)1ln(l-e #)1)
-(b+1)1n(1l-e~Y) -gﬁ%
= | x( b Ye *Lax
"0 b+T
@ - bx
+ f - (b+1) In(1-e ¥)e D¥1gy
- (b+1)1ln(l-e”¥)
2% -+l 1n(l~e™) .. -+l 1in(1-e”Y)
s e M
0 0
- oY
- (b+l)ln(l-e7¥)ePln(l-e O
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-bx
(B%T)e b+ldx




NI AL E L= b+l 1n(1-e™V) ])

- _e-Y oY |

= (b+l)In(1-e V) ePlntlze ) (bAl, () _cblall-e 71, ;
i

bln(l-e ¥) ’

- (b+l)1n(l-e ¥)e

E(MIN[(b;l)En+l,-(b+l) 1n (1-e"¥) 1)

Bt (1- (1-e7Y1P) (III.D.3.4) -

r 2

Substituting III.D.3.3 and IIXI.D.3.4 into III.D.3.2 yields

e {2y )

- /mb - = -
E(X X ) = ;o<—§l)<1-e Y/P) (BEh) (1- 11-e7Y1P) e Yay 1
= - &y
b 2 - b
Bty 2( o Yay o (BEL) [ <9§l) dy

- (Egi)zf Y (1-e7Y)Pqy

1
-(l+gly -
+ (b+l)2f b (l-e y)bdy

The first two integrals are trivial. In the third the change

of variable z = (l-e”¥), dz = e Ydy makes that integral straight-

forward. In the last integral, the change of variable u = e-y,
-%? = dy makes that integral recognizable as the integral of

a Beta random variable. Using these changes of variables and
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making the appropriate changes to the limits of integration

produces

1

1 0 - (1l+x)
b+l.2 b+l b+l 2[ zbdz + [ u b (l-u)b(-%g) |
0 b

S s e

E(X X
nn

1
bil, | (btly _bel | T 1/by by

= ) ~ ) -
b b b2 0

r(1+%>r(1+b)

F(2+b+é)

1.,1.. .
Bx(s)bi(b)

1 1, . I,
(L+b+g) (b+5) T (b+g)

2,1 .
b T(s)x (b)

(b2+b+1) (b2+1) T (b+d)

Then

2T (£) 7T (b)
2

covix_ ,X ) =
n'“n+l (b%+b+1) (b +l)T(b;§5

and

bzr(%)r(b)
-1 (III.D.3.5)

CORR(X ,X ) =
n'"n+l (b24b+1) (b°+1) T (b4d)
Like the expression for positive correlation, this
expression is also symmetric with respect to reciprocal values
of the parameter. It attains a minimum value of minus one-

third when the parameter value is one. Graphs of the
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correlation as a function of the parameter b for both posi-

tive and negative correlations are provided in Figures III.D.3.1
and III.D.3.2, respectively. Unlike the NEMA(l) model which i
requires an additional parameter (see equation III.B.6) to
achieve a full range of negative correlations, the moving
minimum model can achieve its full range with the single
parameter b and an antithetic sequence {EA}.

4. Joint Density of Xn and xn+l

Calculation of the joint density of xn and Xn+l is
possible using a conditioning argument to determine
P(XnixlEn= z) and P(Xn+l_<_y]En= z) . These values along with

the probability that En takes on a given range of values are ;

sufficient to determine the joint distribution function of Xn
and Xo+1° The form of the distribution will vary depending on
whether one is above or below the line X.41 = BX,. The joint
density, where it exists, is determined by differentiating

the distribution function.

From III.D.l1.2 we have

_ b+l
X, = MIN([T]En'[b+l]En—l) .
Then
( 1 if (Egl)z < X,
p(xnixiEnz z) = I _x (III.D.4.1)
1-e Pt ¢ (]E%i)z > x.
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The first result in the above is obvious. To justify the

second, consider

=z2>2%) <
P(Xnix(En-z>b+l) = P([b+l]E _; <x)

- X
= P D)

__X
= 1 b+l
= - e .

. _ b+l
Since xn+l = MIN([—B—]E [b+l]En), then

n+l’

Y
‘ 1 if z < BeT’
P(X ,12vlE =2) = l b
b+l
1-e if z> gly

To consider the joint distribution, note

g%% < E¥T (i.e. when you are above the line bx =

of possible z values can be broken up into three

(I11.D.4.2)

that when
y). the range

regions. See

Figure III.D.4.1. Then, since En is Exponential with unit
mean,
: ~ bx
P(z < REGION 1) = P(z im)'
-2x
P(z < REGION 1) = 1 - e °¥1, (III.D.4.3)
P(z < REGION 2) = P(2E<azsgin),
171
i m——“ antlly s, SRS, - —_ —_

h i



¢ h Q111 34NII4

[+9 1+9
— / Xgq 1 0°0
CONOIOTIY T 2 NOTI9dW 1 NDI93Y
I°"h-0°1I1 34N9I4
1+4 1+
7 A X 0

cCNOIOJY 2 NOI93Y

[ OND L9 Y

172




P(z ¢ REGION 2) = e - e ) (III.D.4.4)
P(z ¢ REGION 3) = p(z>5{T)
-bLl
P(z <« REGION 3) = e °F (III.D.4.5)
Now by definition
P(xnix,xmliylz ¢ REGION i) = P(xn_<_x|z ¢ REGION i)
XP(Xn+liy!z ¢ REGION i) (II1.C.4.6)

because when conditioned on the value of E., these probabili-
ties are independent. Using the above egquation, III.D.4.1,

f I1I.D.4.2, and the definition of the regions in Figure III.D.4.1,

| P<xnix'xn+1inz ¢ REGION 1) = 1 (III1.D.4.7)
? -

! P(X_<X,X_, <ylz « REGION 2) = 1 - e %! (III.D.4.8)
; X _b

| P(X_<X,X , <ylz ¢ REGION 3) = (l-e °*)(1-e ") (111.p.4.9)

{ Using the results of III.D.4.3 through III.D.4.5 and III.D.4.7

through II11.D.4.9 we can compute the joint distribution of X,

when v > bx by using the relation

! and X
n

+1




w

P(X <%,X 1 2V)

L

P(X_< x,X +liy|z ¢ REGION 1) (II1.D.4.10)
i=1l n

- n

x P(z ¢ REGION i)

bx bx

X
b+l)+(1-e b+l)(e b+l _ -y/b+l

= 1l(l-e )

__X by
+ (l-e E:ﬂl‘-)(l-e b+l)e-Y/(b+l)

bx bx Y% (x+y) Y

b+l | b+l_e-x_e b+l , b+l o b+l

= l-e

~ixty) _(__l_) (x+[b+1]
- y)
- e Pl oY, BHL

i
’—l
1
1
{
0]
.
+
V]

P(X_ <x,X (III.D.4.11)

n+l 2y

Similarly, when y < bx (i.e. when you are below the
line bx = y), the range of possible z values can be separated
into three regions. See Figure III.D.4.2. Then

P(Z<‘y'_)r

1,
]

P{(z : REGION 1)

~b+1
__LI
P(z : REGION 2) = 1 - e 2%, (III.D.4.12)
. - y bx
P(z « REGION 2) P(EAT <2 <ga) ¢
bx

P(z : REGION 2) = (ITI.D.4.13)

P(z : REGION 3,

I
o
9
v

o
o

+

i




bx

P(z < REGION 3) = e 2*1

(III.D.4.14)
Using III.D.4.1, III.D.4.2, III.D.4.6, and the definitions of
the regions in Figure III.D.4.2, the following results hold

for the given region.

P(X <x,X ., <ylz < REGION 1) = 1 (III.D.4.15)
by
B+1
P(X,<xX ,,<ylz < REGION 2) = 1 - e (II1.D.4.16)
_by
B+1
P(X <x,X ., <ylz < REGION 3) = (l-e ) (III.D.4.17)
-
« (1-e P*h

Combining III.D.4.10 with III.D.4.12 through III.D.4.17 yields

for bx < y
b
-y =X ‘X'Sf%
P(X <%, X 1 2y) = l-e f-e "+e (III.D.4.18)
Let Fl(x,y) = l-e *-e Yie b+1 the distribution

function of X, and Xne1 when bx < y; and let fl(x,y) be the

joint density -.f Xn and xn+l when bx < y. Then

X
- - “BvL Y
fl(x,y) = %; %; Fl(x,y) = %; %;[l—e X.e Ve 1 ]
- 3 . -y_. b+l
- ax[e € ]
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T =

£f7(x,y) = (S%T)e bx < y; x > 0. (IX1.D.4.19)

For bxtf y, the distribution function, szx,y), is

if fz(x,y) is the joint density of X,

and Xn+l when bx > y, then

2 3 5 .2 3 2 'x'ﬁ?%
= - e = 9 1Y _TX
b
_ 3 .-y , b . T*b¥I
= 3xle -G ]
2 b ‘x';§&
£ (x,y) = (537 y < bx; y > 0. (III.D.4.20)

Note that there is a positive probability that the
point (Xn’xn+l) lies on the line bx = y. This probability

can be computed as follows. We have

_ b+1
X, = MIN([Z=IE , (b+l]E__;)
_ b+1
Xn+l = MIN( [T]En"'l' [b+l]En)
The point (X _,X ) lies on the line bx = when X_ = (E:l)E
P n’ “n+l b 4 n b n
and Xn+l = (b+l)En. Now

_ b+l . _
P(Xn— [T]Enlxn+l = [b+l]En)

PRENE_ < (b+1]E__ s (b+11E_ < (2EHE L))
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The events in the right hand side can be made independent by

conditioning on the value of En' Then

b+l

P(X = [PE=)E ;X ,; = [b+1]E )
® b+l b+1 y
= IOP([—b—]yi[b+l]E-n_1.[b+11yg[Tan+llEn=y)e dy
- ¥ -y
jop(En_l >£)P(E ,, >Dby)e *dy
1 o 1 -(b+l+%)y
= T/ (btl+ple dy
b+l+B 0
b+1 b
P(X_= [==]E ;X ., = [b+1]E) = —>—. (III.D.4.21)
n b n’ “n+l Fn b2+b+l

Because there is a positive probability of lying on the line
bx = y, the moving minimum model can be said to have a line
degeneracy. An important implication of the positive proba-

bility of (Xn,X lying on the line bx = y is that the

n+l)
moving minimum model will produce runs of values of constant
ratio b. The values of {Xn} in these runs will be decreasing,
equal, or increasing for b less than, equal to, or greater
than cne, respectively. The length of the runs will be geo-

metrically distributed with parameter —7£L—- for the positive

b"+b+1
correlation case., It was this kind of degeneracy in the
Exponential autoregressive model, EAR(1l), that proved to be

one of the model's major weaknesses. The degeneracy also
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occurs in the Tavares autoregressive model and the bivariate

EXxponential pairs derived by Marshall and Olkin.

The probability of lying above or below the line bx =y

can be easily found by integrating the appropriate joint den-

sity over the area desired. Thus, for bx < vy,

P(lying above bx =y)

P(lying above bx =y)

Similarly for bx > vy

P(lying below bx=y) =

P{(lying below bx =y)

L)

N

]

[ | flx,y)dyax
0 bx

X
2 1 Th+L
= [ [ (==)e
bx b+l
- .
_ 1 b+l -bx
= fo(m) e d
- 1
bl+b+l

© bx 2
/| £%(x,y)dydx
0 0

b
© bx -X-
J (ng)e *layax
0 0

. b’x
[ e *(1-e 2+ ax
0
1] - ——PFl
b2+b+l
. _p:
b2+b+l
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5. Conditional Expectation and P(X > X )
n+l n

Besides the correlation coefficient, there are two

other characterizations of the joint distribution of xn and

X1 which we have considered. They are the conditional

expectations and the P(xn > Xn)' Both of these gquantities

+1

can be derived by considering the four possible sets of values

for Xn and xn+l'

and weighting the conditional expectation or probability by

its probability of occurrence.

computing the probability of each set occurring,

First, the probability of occurrence for each set of

values must be calculated. Consider the case where Xn = (—E_)En
_ b+l
and Xn+l = (—5—)En+l.
_ b+l _ b+1l,
P(Xnm b ]En'xn+l__[ B Ln+l)
b+1 b+1
P( [—b—] En < [b+l]En_l, [—b—] En+l < [b+l]En)

By conditioning on the value of E . the events on the RHS
become independent. The calculation then proceeds in a

straightforward way.

b+l

b+1 [
n-1'""Db

/ P(I=5=ly < [b+1]E JE_,; < [b+lly|E =y)e Yay
0

b n+

iby)e-ydy

@ 4
IOP(En-l‘ b P (Eney

179




= b+l _ b+l
P(X, = [55-1En Xy, = 5571 ER, )

 -(E+l)y © = (b+l+d)y
= [ e dy - | e dy
0 0
_ b _ _ b
b+1 b2+b+l
px = BLye x =2l oy - b3
- etlg - fb*l
n b n’ “n+l b n+l (b+l)(b2+b+l)

The second case when Xn = b+l

already been computed.

peated here as

b+l b

P(Xn= [——b ]En’xn+l = [b+l]En) =
The third case is when X =
Here we proceed as in the first case.

b+1
[—b—] E

P (Xn = [b+1]E

n-l’xn n+l)

b+l b+l

I~

P({b+1]E__;

® b+l b+l
IOP([b""l]En_l i [ b ]Yr [—b_]E

n
©
[()P(En_l i%)P(Exwl <by)e Yay
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b2+b+1

(b+l)En_l and X4

l=

(B, (BER1E, ) < [D+1IE)

A e,

4
4
4
©
N

L
.

’.. ']

(—E—)En and Xn+1 = (b+1)En has

The result is IXI.D.4.21 and is re-

(III.D.5.2)

b+l
57 Ener-

41 < [b+llyE =y)e ¥ay

et I

.4




b+l

PAXp = [b+LIE ) /X, = 5571BL4)
- jwe-ydy__jme'(l+%)ydy__j“e-(b+1)ydy_+fme'(b+l+%)ydy
0 0 0 0
= l-pgh-mErt b2+;+l
P(X = [b+11E__ X, = (e ) = —52— (III.D.5.3)

b +b+1

The final case is when X = (b+1)E__, and X_,, = (b+1)E . As

before

P(Xn = [b+l1l]E 1= [b+l]En)

n-l'Xn+

bl b+1 b+l - -y
jop([b+1lnn_11[ o1y, (b+lly < (S5RIE L (B =yle fdy

= jop(En_l <fip(E_,, >by)e Yay
1
® o ~{b+l+z)y
/Oe (b+l)ydy - f e b dy
0

_ 1 _ _b

DL p2ipel
_ _ _ 1 -

P(X = [b+11E__;,X_, = [b+1]E ) = (III.D.5.4)

(b+1) (b%+b+1)

The conditional expectations can now be written by

inspection.
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Case E(X 11X =)
X T [EgllEn'Xn+l:=[E%£]En+l Q%L
x, = (ZhE ,x_, = [b+1]E_ by
Xn = [b+l]En-l'xn+l:=[EgllEn+l E%l
X, = [b+l]En_l,Xn+l==[b+l]En_l b+l

Weighting these conditicnal expectations by the probabilities

in IIT.D.5.1 through III.D.5.4 yields the final result.

4
EXpaplx=y) = iif(xn+llxn==y;case i)P(case i)
= K 3 1+ (by) ()
{(b+1) (b°+b+1) b<+b+1
+ L (2 L
T bT4b+l (b+1] (b%+b+1]
n+ln b2 +b+1

t 1s quite surprising that the regression of X 4 On xn is
linear in y, considering the non~linearity of the process which

generates the {Xn}.
The conditional expectation of X given Xn+l can be

derived with equal dispatch.
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j‘ Case EX (X =Y
_ b+l _ b+l b+l
Xn = 1B Xy = S5 1EL b
= (bl = Y
Xn-[ 5 ]En,xn+l-—[b+l]En b
_ _ b+l
Xn= [D+LIE, 1. X = 55 1Eqn b+l
X, = [D+11E,_1,X 1 = [b+1]E, b+l
Using III.D.5.1 through III.D.5.4 as before
4 1
E(X X, =¥) = iElE(Xnan+l==y,case i)P(case i)
b+1 b3 v b
= (Bt ) + (&) ()
[b+1] [b"+b+1] b +b+1
1
| + (b+1) (52—) + (b+1) ( L
i b“+b+1 (b+1] [b®+b+1]
’ iy
. E(X_|X ., =y) = ¥ 1. (III.D.5.6)
: - n'n+l b2+b+1

The probability that Xn+l is greater than Xn can also
be easily computed if one is careful to differentiate between

the case where b < 1 and b > 1.

>X )

_ b+l _ (b+l
Xn"[ b ]En'xn+l"[ b ]En+l
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0 if b <1
b+l - !
X =[=—]E_,X = [b+1l]E {
n b n’ “n+l n 1 if b o> 1
- _ b+l 1
xn-'[b+l]En-l’xn+l"[ b ]En+l b+l
X = [b+1]E_ ,,X_ ., = [b+l]E i
n n-1’"n+1 n 2

Thus when b < 1 we have, using III.D.5.1 through III.D.5.4

P(X > X )

It

4
) P(X > X_|case i)P(case i)
=1 n+l n

n+l n i
3
1 b 1 b

= (5)( ) + ( ) ( )

2 [b+l][b2+b+1] b+l b2+b+l
+ (3 L
[b+1] [b"+b+1]

P(X X )y = % - bz , b < 1. (IT1.D.5.7)
n n (b+1) (b“+b+1)

A similar computation with b > 1 again using III.D.5.1

through III.D.5.4 yields

b

5 , b > 1. (I1I.D.5.8)
(b+1) (b“+b+1)

+

N+~

P(xn+l> Xn) =

Thus a graph of P(Xn+l> xn) will have a discontinuity at b =1
when case 2 switches from a prcbability of zero to a probability

of one. This graph is presented as Figure III.D.5.1. The
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minimum value of one-third occurs at b = 1. The maximum value
of two-thirds occurs at b = l+. The moving minimum model,
therefore, has a greater range of values for the P(xn+l >Xn)
than does the NEMA(l) model. However, the greater range for
the P(Xn+l:>xn) and greater range of correlations must be
balanced against the degeneracy of the model.

As was noted with the NEMA(l) model, the correlation
in non-normal models does not define the joint properties of
X, and Xn+l’ Although the cases of b and % are indistinguish-
able from the viewpoint of correlation (see I1I.D.2.4 and
II1.D.3.5), these cases will have significantly different
sample paths as indicated by III.D.5.7, III.D.5.8, and the
discussion of runs up and down in III.D.4.

Three examples of sample paths for different b values
are given in Figures III.D.5.2 through III.D.5.4. The degen-~
eracy of the model is clearly present in the sample paths as
a tendency to produce runs of equal, increasing or decreasing
values, respectively. A comparison of Figqures III.D.5.3 and

I1I1.D.5.4 quickly demonstrates that while these two sample

- paths have the same correlation, they produce significantly

different {Xn} sequences. This is a graphic indication that
non-normal processes are not determined sclely by their
correlation structure.

Figures I11I.D.5.5 through III.D.5.7 are the scatter
plots associated with the sample paths in Figures III.D.5.2

through III.D.5.4, respectively. Here, too, the degeneracy
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'MIN SCQTTER PLOT
B VALUE: 1.00
TRUE RHG: 0,33

SAMPLE RHO: 0.3Z2
0 EXTREME VALUES NOT PLOTTED

3. 20 4,80 5. 40
X (N)

FIGURE III.D.5.5
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B VALUE: 1.50
= TRUE RuD: 0,32
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FIGURE III.D.5.6
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“MIN SCATTER PLOT
B VALUE: 0.067
TRUE RHO: O0.32
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FIGURE II1I.D.5.7
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of the model is clearly present in the tendency of the
(xn’xn+l) plots to lie on the line Xn+l = bxn' The slope
of this line determines whethei the runs are of equal, in-
creasing or decreasing value.

6. Conditional Expectation and P (X
Antithetic Variables

X )

>
n+1

Results similar to those obtained in III.D.5 can be
obtained for the moving minimum model with negative correlation.
The procedure for determining the conditional expectations and
the probability that xn+l is greater than X, using antithetic
variables is exactly the same as that in the previous section.
First, the probability of each of the four possible combina-

tions of X, and Xn 1 values is computed, the conditional

+
expectation or probability is computed for each case, and
the final weighted sum of conditional expectations or proba-
bilities is finally computed. 1In one instance no closed form
answer is available and numerical procedures are used.
Recall that the generation scheme when using antithetic

variables is

x, = MIN(I2EE , (b+1]E! 1, (III.D.6.1)
where {En, n=20,1,...} is an iid sequence of Fxponentially
distributed random variables with unit mean, {EA, n=20,1,...}
is generated from the {En} sequence by the relationship
E} = -1ln (l-e-En) which implies that {En} is also iid Exponen-~

tial with unit mean, b > 0.
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First, consider the case where Xn = [E%l]En and

_ b+l
&Hl—[jrmwﬂ. Then

b+l _ b+l
P(X, = (GIE Xy = 5B )

P [*i;;—l-nzn < [b+l]E!_;, [’%ll E 41 S [b+1]ED)

Using the standard conditioning argument produces

b+l

_ b+l
P(xn"[-ﬁ_]En’x

n+l = Cp 1B

n+l)

f p(Bhy < e1lE, BEEE L) < -(b+11in(1-e ™) |E_=y)eVay
0

oo

/OP (B)_1 > EL)IP(E , < -blnll-e ¥])e Yay

J e—Y/b(l-[l-e—y]b)e—Ydy
0

® -(1+%)y (l+%)

e dy - | (l-e-y)b(e-y)
0

dy
0

The first integral is straightforward. In the second integral,
the change of variable u = e Y, -%% = dy makes this integral
recognizable as the integral of a Beta random variable. Making
this change of variable and making the appropriate changes in

the limits of integration produces
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b+l

P(xn= ! b ]En’xn+l= [b+l]En+l)
1 1
= b-bi-_l-f (l—u)b(u)bdu
0
[ (1+b)T (1+3)
b _ b
b+l F(2+b+%)
_ b+l -
P(Xn_ [ b ]Enlxn+l_ [b+l]En+l)
5 b?T (b)I‘(%) |
= - (III.D.6.2
P (0%hel) (6241 T (b4)
In the second case, X_ = [E]E and X = [b+l1l]E’ Pro-
" “n b n n+l n’
ceeding as before
= (bl -
P(Xn- [ b ]En'xn+l— [b+l]E;1)
b+1 b+1

P([T]Eni [b+l]Er’l-l' [b+l]E;li [_b_]EnH.)

f 2 221y < b+11E! |, -[b+1]1n(l-e™¥] < |

b+l |
D 1En+1l

En =y) e-ydy

f B(EL_; >EIP(E_,; > -bln{l-e™¥])e Yay
0

o
/ e Y/P(1-e7Y) be_ydy
0

1
© _ -(1+—)y
[ (l-e Y)Pg b dy
0
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This is the same integral as the second integral in the first

case. Thus

b+l

b2T (b) r(%)
= > 5 T (III.D.6.3)
(b“+b+1) (b"+1) I‘(b+-5)

Next consider the case where Xn = (b+l)Er'1_l and
_ b+l
Xne1 = 5)Eq4, - Then
b+l

P(X = [b+l]Ex'1-l'xn+l= [_b IE )

b+l b+l
P( [b'*']-]EI'1 < [T]En’ [—b_]En+l < [b+l]Er'1

x©

/op( (b+11E! < (B1y, (B2, < (b+1]in(l-e Y] |E =y)e Ydy

@

[ P(e! <& P(E ,; <-blnll-e"¥])e Yay
0

o © —(l+%)y © _ b =) _ b _
[ e ydy--f e ey-/ e Y(-e7Y) dy + [ (1-e Y)®(e™Y)
0 o] 0 0

The first two integrals do not present a problem. Making the
change of variable z = 1-e7Y, az = e-ydy makes the third inte-
gral easy. The last integral is the same as the second integral

in the first case. So
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b+l
P(X [b+l]En l,X +1 "[-B—]En+l)
-1 b _ 1, b F(b)F(b)
B+l Bl T (p24p41) (b241) T (b4d)
= b+l
bzl‘(b)I‘(%)
= 5 5 T (III.D.6.4)
(b“+b+1) (b +1)F(b+g)
Finally, consider the case when Xn = (b+l)EI'1_l and
X 41 = (b+l)E£. Then
P(X = [b+1]1E! _),X ., = [b+1]1E})
_ b+l b+l
= P([b+l]E' [———]E ,[b+l]E <= B -1 n+l)
® b+l b+l
= j P([b+1]E! < [P£=1y,-[b+1]lnll-e"¥] < [ZL=1E ,, [E =y)e Yy
= _ =Y -
= JOP(Eﬂ-l:ib)P(En+l bln(l-e “])e 44
1
- - - © _ _ (l+_)
= [ 1-e™)PeVay - [ (1-eV)Pe7Y)  Pay
0 0
These integrals are the same as the third and fourth integrals
in case three. Therefore,
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P(X = [b+1]E}_

1+ %4y = [D¥LIED)

L b2 (b) T (_11;) (
= - III.D.6.5)
b+l (p24p41) (b2+1)T (b%)

The conditional expectations given a specific case

of the values of X, and X,4 can be written by inspection.

Hence,
Case E (Xn+l-l-§n =y)
_ b+l - b+l . b+l
Xn = 5r1Eqe Xpy = (F5T1E 47 5 -
by
- b+l ', _ _, b+l
Xn-[ 5 lEn'xn+l [b+l]E (b+1)1ln(l-e ).
_ b+1 b+l
X = +LIE ) Xne1 = 5 By )
Xn= [b+l]E' l,X 41 = [b+l]Er'1; b+1.

Combining these results with equations III.D.6.2 through

III.D.6.5 and letting

b%r ()7 (3)

(b24b+1) (B2+1) T (b+E)

we have
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4
EX . 1X =y) = izln(xnﬂlxxﬁy,c:a::.e i)P(case i) (III.D.6.6)
A
= (g2r-9 Bh - cb+l)in(1-e P*1)

+e®h) + (-0 1)

-y
b+1
E(X /X, =y) = 2-G(b+l) (1+ln(l-e 1) (III.D.6.7)
Similarly, we can derive the expression for E(xnlxn+l==y)
Case E(Xn_(ﬁn+l=z)
b+l _ b+l . b+1
X, = %= o JE 'Xn+l'-[ b ]En+l' b~
b+1 b+1 “b+1
Xn=={ ) ]E /X ] [b+l}EA; -(———Jl (l-e ).
- ol
Xy = [b+LIEL 3/ X4y = 5T1EL (b+1).
X,=[b+llE  _,,X ., = [b+1]E]; (b+l) .

Then using III.D.6.2 through III.D.6.5 and again letting

20 (B) T ()
G = p) 3 T
(b®+b+1) (b +1)F(b+3)
E(anxn+l=y) = iElz(xnlxnﬂ,case i)P(case i)
b+l b+ 'SKT
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X
b+1 b+1

E(Xn[xn+l=y) = 2 - G(T)(l+ln{l-e

The probability that xn+l is greater than X can be
approached in the same fashion as the conditional expecta-

tions. The second case will be reserved for individual

attention.
Case P(X +1>X)
_ b+l _ b+l 1
X, = 5% ]En’xn+l"[ b ]En+l 2
_ _ b+l 1
Xy = [HlIEL 1 Xpy = 5718 B+T
X_ = [b+l]E' .,X_ ., = [b+1]E! 1
n n-1’"n+l n 2
The second case, X_ = [EiilE and X = [b+l]E', does not
* “n b n n+l n’

allow a closed form solution. We get

_ ' b+1
P(Xn+l>Xn) = P([b+l]En> [—b——]En)

-E
= P(-[b+llln[l-e n]3>[E-§J‘-]En)

-BE En
= P(-ln[l-e “}>TD-)

-E b -E
= P([{l-e 7
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xn+l) lies on the curve e

-y -y
O)b = e O, then

Hence, if we can find Yo such that (l-e
P(X ,1>X,) = l-e-yo. The required solution can be found by
numerical means for any given value of b. A computer program
to determine Yq to an accuracy of 10-6 for a given value of
b and to compute P(Xn+1=>xn) was prepared. A graph of the
results is presented as Figure III.D.6.1l. When using anti-
thetic variables, the moving minimum model has a restricted
range of possible values for P(Xn+l>>xn). The maximum value
of approximately 0.509 occurs at about 0.30. The minimum
value of approximately 0.491 occurs at about 3.33.

This small range of values for the P(Xn+l> Xn) is
shown in the relative indistinguishability among the sample
paths displayed in Figures III.D.6.2 through I1I1.D.6.4. Of
more interest are the scatter plots presented in Figures III.D.6.5
through III1.D.6.7. In these plots the degeneracy of the moving
minimum model is clearly displayed. When xn achieves a value
of y based on En’ then Xn+l is constrained to have a value less
than -ln(l-e—xn). In the case where equality is achieved, the
second case in the discussion in this section, the point (Xn’
-Xn + e-xn+l = 1, This constraint
is clearly evident in the scatter plots. Thus the moving

minimum model displays a degenerate behavior for negative

correlations as well as positive.
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“IMIN SCARTTER PLOT
B VALUE: 1.00
3 TRUE RHO:-0.33

<7 SAMPLE RHO:-0.3U
. O EXTREME VALUES NOT PLOTTED

FIGURE III.D.6.5
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X (N+1)

6.40

Yy.80

MIN SCHTTER PLOT
B VALUE: 1.50
TRUE RHO:-0.33

| SAMPLE RHO:-0.32

4 EXTREME VALUES NOT PLOTTED

FIGURE III.D.6.6
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MIN SCHTTER FPLOT
3 VALUE: 0.87

=3 TRUE RHO:-0. 33
s SAMPLE RHO:-0.33
.2 EXTREME VARLUES NOT PLOTTED

FIGURE III.D.6.7
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E. THE BETA-~EXPONENTIAL MODEL

1. Introduction

A third method that can be used to generate correlated,
marginally Exponentially distributed random variables is a
special case of the Beta-Gamma model given in Lawrance and
Lewis [Ref. 18]. This model generates an {Xn} sequence using

the relation

X, = Bn(q,l-—q)En + Bn(l-q,q)litn_l n=1,2,..., (II1.E.1.1)
where {Bn(q:l-q), n=1,2,...} is an iid sequence of Beta

random variables, {Bn(l-q,q), n=1,2,...} is an iid sequence

of Beta random variables, {En, n=20,1,...} is an iid sequence
of Exponential random variables with unit mean, {Bn(q,l-q)},
{Bn(l—q,q)}, and {En} are mutually independent, and 0 < g < 1.
The density for a Beta(m,n) variable is

% M L1-™1 0 <x<1;m>0;n>0. (III.E.1.2)

In practice the Beta random variables can be generated from

two Gamma distributed random variables using the relationship

G (m)
G(m)+G(n)

is a Gamma random variable with a shape parameter of K and

B(m,n) = from Kotz and Johnson [Ref. 19], where G(K)
a scale parameter of one.

This is a special case of the Gamma model considered
in Chapter II of this thesis. It works because, as described
by Lewis [Ref. 10],in III.E.l.1 the product of the Bn(q,l-q)
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variable and the En variable is a Gamma (g) variable. Simi-
larly, the product of the Bn(l-q,q) and the En—l variables is
a Gamma (l-q), independent of the Gamma (g) variable. Conse-
quently, their sum is an Exponential variable, Xn. The {Xn}
process is clearly one-dependent, as for the NEMA(l) process.
Because of a lack of a closed form sclution for the
integral of the Beta density when the limits of integration
are not from zero to one, this model is the least tractable
of those considered in Chapter III of this thesis. However,
its correlation structure can be determined, an expression
for the Laplace-Stieltjes transform of a sum of r random varia-
bles can be derived, and the probability of Xn+l being greater
than X, can be simulated. An advantage of this model is that
it extends directly to moving average Gamma processes (see
Chapter II). This extension is not possible with the NEMA(1)
or the moving minimum model.

2. Correlation Structure, Positive and Negative

The correlation structure can be determined using a

standard approach. We have using III.E.1l.1l

xnxn+l = (Bn(q,l-q)En+Bn(1-q,q)En_l)(Bn+l(q,1.q)gn+l

+ Bn+l (l-q,Q)En)

2
+ B, (1~9,9)B_ (q,1-q)E_+B_, (1-q,q)B (1~q,Q)EE _,
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Taking expectations and using the iid nature and independence

of the {Bn(q,l-q)}, {Bn(l~q,q)}, and {En} sequences yields

2
E(xnxn+l) = gq“ + gq(l-q) + 2gq(l-qg) + (l-q)2
Hence,
Cov(X,, X ,4) = q(l-q)
and

As with the other linear additive models, this correlation is
double valued and lies in the range (O,%).

The range of possible correlations can be extended
to negative values by modifying the generation formula by

including an {Eé} sequence. Thus

= - - '
X, = Bn(q,l qE, + Bn(l q,q)En_l, (III.E.2.2)
where all random variables and constants are as defined for
IIT.E.1.1 and {Eﬁ, n=20,1,...} is an iid sequence having a
specified correlation with the {En} sequence. In particuliar,

E, and EA may be an antithetic pair. The correlation of the

{Xn} using II.E.2.2 can be determined in the same way as before.

Zonsequently,
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xnxn+l = (Bn(q,l—q)En-+Bn(l-q,q)E$_l)

(Bn+l(q'1_q)En+l'+Bn+l(l-q’q)Eﬂ)

Bn+l(q,l-q)Bn(q.l-q)En+lEn-+Bn+l(q,l-q)Bn(l-q,q)En+lEé_l

+ Bn+l(l-q,q)Bn(q,l—q)EnEx'1+Bn+l(l-q,q)Bn(l—q,q)EI'lEr"_1

Taking expectations as before
E(X X_..) = q’+q(l-q)+q(l-q) [COV(E_,E')+1]+(1-q)>2
n“n+l n’"n q9 |
= - ]
1 + g(1 q)COV(En,En)
Therefore,
- ]
COV(Xn,Xn+l) g(l q)COV(En,En)
and
CORR(X,,X,,1) = q(i-q)CORR(E ,E'), 0 < g < L. (III.E.2.3)
When Eﬂ = En' the correlation is one and III.E.2.3
reduces to III.E.2.2. When En and Eﬁ are antithetic the
correlation is -0.6449 and negative correlations result. When

q is 0.50, the correlation for the {Xn} sequence falls in the
(~0.16,0.25) range depending on the correlation between En

and EA.
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3. Laplace-Stieltjes Transform of a Sum

r
T = ) X, (III1.3.1)

i=1 *

where {xi} are defined by III.E.1.1. Then

+ ... F Br(q,l-q)Er+Br(1-q,q)Er_l

Br(q,1-q)Er+Bl(l-q,q)E0+[Bl(q,l—q)+Bz(l-q,q)]El

+ ... [B._;(q,1-@)+B_(1-q, @ JE__,;

-sT
Let dp = E(e Ty. Then using the iid nature and independence
r

- - - { - - )
S[Br(q.l q)Er+Bl(l q,q)E0+\Bl(q,l q)+B2(l q,q):El

+...+{B__,(g,1-q)+B (l-q,q)IE__,]
(s) = El(e r-1 r r-1

-sBr(q,l-q)En -sBl(l-q,q)Eo)

= E(e YJE(e

-s[(B, (q,1-q)+B,(1-q,q]E
< E(e 1 2 1)

-s[Br_l(q,l-q)+Br(l-QrQ)]Er_l)

X ...E(e
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by (8] = Iprs? Yiprg) g (501771
[pa) ¥ (811772,
where
v (s) = E(e-s[Bi(qul-q)+Bi_l(1-q,q)]Ei_l]).

The Laplace transform of the sum of two Beta random variables

is a confluent hypergeometric function. Its form is too compli-
cated to be of significant value in deriving the analytic
behavior of the Beta-Exponential model.

4. Cmpirical P (X

n+1 >an

Because of the presence of the Beta random variables,

the probability of Xn 1 being greater can not be analytically

+
determined with a reasonable amount of effort. In an attempt
to establish a range for this probability, a simulation was
used. In order to achieve a precision of at least 0.001,

sixty-eight thousand comparisons were generated for each of

- ten random number seeds. The Beta random variables were

generated using the Kotz and Johnson [Ref. 32] relation

= G(m)
G(m)+G(n)

sequences were generated by a call to a standard generator of

B(m,n) explained in III.E.l. The Exponential

Exponentials., When the simulation was run for nineteen values
of q from 0.05 to 0.95 in steps of 0.05, the P(Xn+l=>xn) was

0.500 for all values of q.
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Although the empirical probability that xn+l is
greater than Xn is constant at a value of 0.500, reminiscent
of the autoregressive model of Chapter II.B.6, the distribu-
tion of Xoa ~X, is not symmetric and no simple proof for
this situation has been found.

The low serial correlation and the apparent invaria-

bility of the P(Xn > Xn) makes the use of sample paths and

+1
scatter plots of little value. Samples are provided in Figures

III.E.4.1 through III.E.4.12.
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FIGURE III.E.4.4
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"BETAR SCATTER PLOT

0:0.67
2| TRUE RHO: Q.22
s SAMPLE RHO: 0.2u
C EXTREME VALUES NOT PLOTTED

FIGURE III.E.4.5
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"BETH SCATTER PLOT
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2 TRUE RHO: 0.22
©l.. . SAMPLE RHO: 0.2u
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p. 00

FIGURE III.E.4.6
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FIGURE III.E.4.10
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IV. PRELIMINARY DATA ANALYSIS

A. INTRODUCTION

During the period 1955 through 1969 a weather ship sta-
tioned in the Gulf of Alaska (50°N,145°W) collected, among
other data, wind speed data at three hour intervals [Ref. 33].
The existence of the wind speed data was brought to Frofessor
Lewis' attention when a student in Oceanography asked him to
provide a model suitable for simulating wind velocity data.
The simulated data was required as input to models of ocean
temperature mixing. A copy of fifteen years of wind speed
data was obtained for this thesis. The intent was to do a
preliminary data analysis and then determine whether any of
the models discussed in this thesis could provide an adequate
representation of this data and, hence, a method for gener-
ating wind velocity sample paths for oceanography simulation.

Initially, the models discussed here are strong a priori

candidates for data of this nature. Intuitively, there is a

strong feeling that an assumption of independence among the

i data is unwarranted. Hence, autoregressive and moving aver-
age models which are designed to reflect the behavior of
correlated data should be considered likely candidates. The
non-negative nature of the data mitigates against the use of
i classical time series anlaysis which is based on the assump-
tion of a normal distribution, and hence negative values, for

the series. The existence of zeros in the data tends to make
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the use of transformations, like taking the log, somewhat
less appealing than otherwise. These considerations indi-~
cate that the models discussed in this thesis should be
considered as likely candidates for modeling the wind speed

data.

B. ANALYSIS OF THE RAW DATA

There were 43,800 data points available for analysis,
2920 for each of the fifteen years between 1955 and 1969
inclusive (the extra data for leap years was discarded).
Since this size data base made it inconvenient, if not
impossible, to manipulate by hand, each year's data was
plotted as a means to promote familiarity with the data.
The plot of each year's data and the plot of the data averaged
over all fifteen years (e.g., all data taken at 0300 on 1
January of each year were averaged) are presented in Figures
IV.B.la through IV.B.lp. Several characteristics can be
observed from these figures. First, and perhaps most obvious,
is the expected yearly cycle of the data. Values at the
beginning and end of the year tend to be higher than those
in the middle. Second, the data is discretized to a large
extent. There exist obvious horizontal lines of equal valued
data. A sort and plot of the entire data set reveals that
the data consists of values that are integral multiples of
1.03 with a few values between these multiples. Next, on

some occasions a series of high values will all be equal,
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indicating that some clipping may have occurred (see Figure
IV.B.la vicinity of 2575 and 2625, Figure IV.B.lb vicinity of
400 and 525, etc.). These last two characteristics indicate
that statistical properties which are sensitive to the be-
havior of the "tail" of a distribution may be affected. The
final observation about the data is that there are apparently
intervals when the data was not actually collected. These
instances appear as reasonably long strings of values which
have a strong linear appearance {as though the values were
produced by linearly interpolating between two boundary
values). See Figures IV.B.lh (vicinity 2400), IV.B.1lj
(vicinity 2250), IV.B.lk (vicinity 50 and 1750}, and IV.B.1lm
(vicinity 150 and 2725).

The cyclical nature of the data is somewhat more apparent
in the plot of the data averaged over the fifteen years (see
Figure IV.B.lp). Additional evidence of this yearly cycle
is presented in Figure IV.B.2. This figure presents twelve
box plots, cone for each month. The data values plotted are
the monthly average wind speed for each of the fifteen years.
The interquartile range and extreme values are shown in a
standard fashion. As an adjunct to this analysis of the
year cycle, the coefficient of variation for the monthly
averages was computed. The coefficient of variation was
essentially constant. See Table IV.B.l, This will have
an impact on the choice of the type of model used to model

this data.
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Average wind velocity by month for each year.
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This yearly cycle is also shown in the periodogram and the
log of the periodogram of the data (averaged over 15 years) as
presented in Figures IV.B.3 and IV.B.4, respectively. The
periodogram is computed from the data in the following way.
Let {X_, n =1,2,...,N} be the raw data and let X = ? X, be

i=1
the mean of the {Xn} sequence and oi be the variance. Let the
{Yn, n=1,2,...,N}; be formed from the {Xn} sequence using the

relation

Y = X - X, (Iv.B.1l)

where N = 2920 is an even number. The Fourier transform of the
{Yn} sequence will have both a real and complex component and
will have % elements. Let {Zn, n = 1,2,...,§} be the Fourier
transform of the {Yn} sequence and let sz and ZjI be the real

and imaginary components of the jth

.th

Let Pj be the j element of the periodogram. Then

P, = (2

2 2 2 . N
3 iR + ZjI)/ZnNo j = 1,2,...,5 (IV.B.2)

X’
defines the periodogram of the {Xn} sequence.

The periodogram dramatically presents the yearly cycle
(3 = 1) as the dominant effect (Pl > 150), although there is
some indication of a six month cycle (j = 2, P, = 9.0). Some-~
what surprising is the apparent lack of any strong time of day
effect. The log periodogram reinforces the dominant role of
the yearly cycle and indicates that six month and six and

twelve hour cycles (j = 2, j = 1460, j = 2920 respectively)

may be important.
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The correlation structure of the data is presented in Table
IV.B.2. The column indicated as "15 Yr Avg" is the average of
the values of the fifteen years. The column indicated as "15
Yr SD" provides the standard deviation of the values about
their mean. Tt is not the standard deviation of the average.
This latter guantity can be obtained by dividing by the square
root of 15, The last column provides the correlation structure
of the average data. The estimated correlations remain artifi-
cially high in this case because averaging reduces the varia-
bility of the data about the year cycle which intensifies the
artificial increase in correlation due to the year cycle. The
correlation structure revealed in Table IV.B.2 for individual
years closely resembles that of an AR(1l) model, in that the
k-step correlation is approximately the one-step correlation
raised to the kth power. The correlations in the table have
a tendency to be slightly higher than the theoretical, calcu-~-
lated value, but the agreement is reasonably good for about
ten steps. Beyond that point the correlations are kept up by

the year cycle, which is not as prominent in the yearly data

~as it is in the averaged data. If nothing else the disparity

between the two correlations 1is evidence of the existence of
a trend in the data.

At this point sufficient information is available to de-
termine some characteristics of the general form of the model
for representing the wind speed data. As noted above, the

correlation structure is similar to that of an AR(l) process
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with positive correlation although nuances may appear as the
year cycle is removed. Hence, an AR(l) model should be used
as a starting point for the construction of the model for
wind speed.

In addition, the cyclic nature of the process must be
modeled. This can be done with either an additive or multi-
plicative model. An additive model might have a structure as

follows.
X = u_ + e, (IV.B.3)

where {xn} is the time series under consideration, Mn is a
deterministic function of n, and the innovative sequence

{en} is a stationary sequence of random variables. In the
usual model this stationarity implies that the marginal vari-
ance 02 is constant and the correlations only depend on the
lag (i.e., p(X ’Xn+k) = p(k)). Using the same definitions

n

the multiplicative model would have the form

Xn = HpEpe

(IV.B.4)
where again the {en} sequence is stationary and independent
of W A characteristic of the additive model is that the
coefficient of variation is a function of the value of Kt
The multiplicative model produces a constant coefficient of

variation. Since the data has a coefficient of variation that

254




is essentially constant, in the crude monthly analysis, the
multiplicative model is preferred.

We have yet to determine the exact form of the mean, Hpt
in equation IV.B.4. However, we do know that this mean will
have a yearly cyclic nature. We also have yet to determine

the general structural nature of the innovative process ¢ _ .

n
These subjects are addressed in the following sections.
C. THE FORM OF THE MEAN; DETRENDING THE DATA
Two basic models were considered to represent the mean.
The first was a single harmonic sinusoidal model
= a+b sin(2Tm ) + b cos(iﬁEL) = a+ k cos(jg!L + 8)
Mn 1 2920 2 2920 2920 '
(Iv.C.1)
2 . ,2.1/2 -1, 5
where k = (bl + bz) and § = tan (- E~). The second was
2
an exponential sine with one harmonic
a+blsin(£%%%)+b2cos(f%%%) a kcos(f%%%+e)
Hp = e = e’ e (IV.C.2)

The second model has the theoretical advantage that it can
not be negative and will represent higher harmonics in a com-
pact form. The sinusocidal model may or may not be negative
depending on the values for 3, bl, and b2. In spite of the
theoretical preference for the exponential sine, both models

were used initially to see if either produced significantly
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better results. Note that if k is small the models are
hardly distingquishable. If k is large, the exponential sin
will clip at low values and is a cycle that would have many
harmonics in its Fourier transform.

The values for the constants in equation IV.C.l were
determined in a straightforward procedure using the least-
squares regression procedure of MINITAB and the data averaged
over 15 years. These estimates could also have been obtained

from the periodogram at wy = 21N, I(wl) ~ {(bl)2 + (bz)z},

using the relations

. N X, _
a = z —Ni = x; (IV.C.3)
i=1
i N Zni
b, = 2 ) X; sin(*5=)/N = imaginary component (IV.C.4)
i=1 of periodogram at
27 /N;
- N 21i
b, = 2 ) X; cos(=g=)/N = real component of
i=1 periodogram at 2w/N.

The variance of these estimates is 20§/N if the xi's are
independent, but since this is clearly not the case here,
estimates of the variance of the estimates cannot be obtained
directly. The results of the estimation are contained in
column 1 of Table IV.C.l.

Similar results were obtained for the constants in IV.C.2

by a slightly more complicated procedure. In order to use a
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{
]
| TABLE IV.C.1
Parameter Estimates for Models of the Mean Value
Function of the Wind Velocity Data
ESTIMATE
1 harmonic 1 hamonic 2 hammonic 2 harmmonic  harmonic
PARAMETER sine exp sine sine exp sine exp sine
a/a' 10.230 2.309 10.230 2.307 2.307
by -0.176 -0.011 -0.175 -0.011 -0.011 T
b2 2.560 0.260 2.566 0.260 0.260
b3 - - -0.593 -0.057 -0.057
b4 - - -0.397 -0.054 -0.054
b5 - - - - 0.014
i - - - -
b6 0.001
!
! - - - - -
i b7 0.010
f
{
;
t
|
i
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least squares approach, a linear relationship must be estab-
lished for the mean value of the process. Taking logs is
the obvious technique to employ, but this introduces a compli-

cation. Taking logs and expectation of IV.C.2 we have

E(ln xn) = 1n Mp + E(1ln sn)

a + bl sin(f%%%) + b2 cos(f%%%) + C.

For example, if the {en} sequence is marginally distributed
as a unit Gamma variate, G(l,k), then ¢ = y(k), where (k)

is the digamma function (derivative of 1ln ~(k)). See Cox and
Lewis [Ref. 29], pages 24-27. The value of the constant ¢
will be combined with the constant a in the least squares
estimation using the 1ln xn's, giving the constant a' = a+c.

To estimate a+c without making Gamma assumptions for the h

innovative process, the xn's are divided by

- = . 2mn " 2Tn
“n = Py sinlzgyg) * by cos(zgmp)

! to give Xé. The data is then divided by the average of the
f xn's which estimate e-(a+c). The result of this is a series
with mean value (within statistical fluctuation) of 1 if the
model for the cycle is correct. The values obtained are listed

in column 2 of TAble IV.C.l. The results of these estimates

are in Figure IV.C.l. In this figure the average data
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is plotted against the value computed for My using both of
the models under consideration.

When using a multiplicative model, the residuals are
formed by dividing the raw data by the mean. The results of
this procedure are presented in Figures IV.C.2a through IV.C.2p
using the exponential sine model for the mean. The results
are not significantly different using the sinusoidal model
of the means. Hence, only the results for the average data
are presented for this case in Figure IV.C.3.

The log periodogram of the average data detrended using
the sinusocidal model for the mean is shown in Figure IV.C.4.
A five-step moving average of this log periodogram is pre-
sented in Figure IV.C.5. The detrending has clearly reduced
the importance of the yearly cycle, but still shows scme evi-
dence of a six month cycle and six and twelve hour cycles.
Similar information is provided for the average data detrended
using the exponential sine model for the mean in Figures IV.C.6
and IV.C.7. This model does not reduce the effect of the

yearly cycle as much as the sinusoidal model for the mean,

- but still shows the six month cycle as being important and

some evidence of six and twelve hour cycles.

Since the exponential sine has the theoretical advantage
of being non-negative and both models of the mean produce
similar results when applied to the data, the exponential
sine is selected as the model of choice and the analysis is

continued using it exclusively.
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D. RESIDUAL PROCESS PROBABILITY STRUCTURE

Having removed the dominant seasonal effect from the
data, it is possible to investigate the structure of the
residual process :_ in the model

n

X = U _€_. (IV.D.1l)

The two facets of the probability structure of the stationary
process {en} which were addressed in Chapter II were the
marginal distribution and the correlation structure. The
residuals produced by dividing the raw data by the apprcpriate
value of the mean were supplied to HISTF, a histogram and box
plot routine developed at the Naval Postgraduate School.
Histograms for each year and the entire data set were pro-
duced. These histograms are presented in Figures IV.D.la
through IV.D.lp. The shape of the histograms is consistent
over the years and indicates that a Gamma distribution is
appropriate for modeling the innovative factors. The param-

eter k can be estimated as the reciprocal of the coefficient

- of variation squared (see equation II.B.4.16). The estimated

value of k for each year is given in Table IV.D.1l.

A careful examination of the statistics associated with
the histogram will reveal that the values for the skewness
and kurtosis are low compared to the theoretical values for

the Gamma distribution, namely 2/vk and 6/k, respectively.

However, this is not unexpected when one recalls the
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Table IV.D.1l.

Moment Estimate of the Gamma Shape Parameter by Year

Year Estimate of k
1955 3.96
1956 4.16
1957 4.38
1958 3.68
1959 3.865
1960 4.45
1961 3.87
1962 3.87
1963 3.86
1964 4.49
1965 4.32
1966 4.04
1967 5.08
1968 4,24

; 1969 5.41
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discretization and clipping that has apparently occurred
while the data was collected and processed. As a rough

check on the extent of the clipping required to produce

values for the kurtosis and skewness similar to those for the
data the following procedure was examined. A sample of 2920
values for a Gamma distribution were produced with mean 1 and
shape parameter k = 4.0 by a call to the NPS random number
generator LLRANDOMII{SGAMA). A histogram of these values was
produced sequentially for the following cases. The data was
clipped so that all values over four were set equal to four,
all values over three were set egual to three, and finally the
highest ten percent of the data was set equal to the value of
the 2890 sample order statistic. The first four central moments
were estimated under each of the conditions. The results are
presented in Table IV.D.2. The results indicate that a
clipping of the top ten percent of the data will vield results

for skewness and kurtosis comparable with those observed in

the data.
TABLE IV.D.2
Mean SD cv Skewness Kurtosis
Gamma 0.986 0.504 0.511 1.128 2.114
Cut at 4.0 0.986 0.504 0.511 1.128 2.114
Cut at 3.0 0.984 0.498 0.506 0.994 1.165
10% Cut 0.982 0.489 0.498 0.861 0.516
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The conclusion that the innovative factors can be modeled

as random variables with Gamma marginals when combined with

the conclusions from IV.B specify the general form of the

model to be possibly that of the GLAR(l) process, although

further detrending might indicate that the more general

GLARMA (p,q) model of Chapter II might have Eg_gg_used.

Since the estimated correlations o(k) are affected by
remaining trend (as seen in Table IV.D.J), it is best to
examine the structure of the dependency process via the
periodogram.

Figures 1IV.D.2 through IV.D.5 show the periodogram and
log periodogram for the 1955 and 1969 data detrended by the
single, yearly harmonic exponential sine (see equation IV.C.2).

Superimposed over these plots is the spectral density and log

spectral density of a theoretical AR(l) process with correla-
tion equal to 0.849 (see Table IV.D.3). This spectral density
is also the spectral density of the GLAR(1l) process. We have

2
flw) = 2l-p ) 0 <wzx<m, (Iv.D.2)

l+p2— 2 cos{w)

with o = 0.849.
All of these plots show that the detrending has reduced
the importance of the yearly cycle and that a six month cycle

has now become the dominant factor. The theoretical GLAR(l)

spectral density fits well for the periodogram after the

point representing the six month cycle. The six month cycle
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Table IV.D.3.

High values for average data shows that a remaining trend is inflating these correlations (see Figure

IVv.D.7.).
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E has now become the dominant factor. Lacking in these plots is

| an indication of a time of day effect. The appearance of a
time of day effect is limited to those plots which use the
average data (see IV.C.4 through IV.C.7). Figures IV.C.4
through IV.C.7 and IV.D.2 thorugh IV.D.7 indicate that a

further refinement in the model of the mean to include a six

month cycle may be helpful. This topic is covered in the
next section.

The correlation structure of the detrended data is depicted
in Table IV.D.3 and Figures IV.D.6a through IV.D.6p and IV.D.7.
Since the one-harmonic year cycle in the data has been reduced,
the correlation of the average data in Table IV.D.3 more closely
reflects that of the average of the fifteen yearly correlograms.
The higher values for the correlations in the average data and
its failure to fall below 0,20 may be indications that a trend
still exists in the data (the six month trend) which is arti-
ficially inflating these values. This may be a further indi-
cation of the desirability of including further cycles in
the model of the mean. The slight increases in the correlations
for lags of 8, 16, and 24 in the average correlogram, Figure
IV.D.6p, and the correlogram for the average data, Figure

IV.D.7, may indicate a small time of day effect.

E. REFINING THE FORM OF THE MEAN; A FURTHER DETRENDING
Since several plots in the previous section indicated that a
six month cycle had become the dominant factor since the removal

of the one-harmonic year cycle, a further refinement for the model i
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of the mean was considered. In this refinement, the sinu-
soidal model for the mean was reintroduced to the analysis
to see if the addition of the second cycle would allow this
model to outperform the exponential sine. With the two

cycles included the sinusoidal model becomes

- : 2mn 2mn . 2mn
n T @ % Dysin(zggg) * Bylzgag) * Py sin (rgg)

2mn
+ b4 cos (m). (IV.E.1l)

The exponential sine becomes

._,2mn 27n ., 2mn 2mn
y _ ea+b151n(§m) +b2 (5-9—2—0—) +b351n (—.1460)+b4c°s(l460) °
(IV.E.2)

Parameters for these models were determined following the
procedures in IV.C and the estimated values are listed in
Table IV.C.,1. The plots of the two resulting values for the

mean are presented in Figure IV.E.l. Since the two curves

are nearly identical and the exponential sine is preferred

on a theoretical basis, the sinusoidal model was not further
considered.

Figures IV.E.2 through IV.E.5 show the periodogram and
log periodogram for 1955 and 1969 after detrending with the
two harmonic exponential gine. The value for an AR(l) proc-

ess is superimposed as before with a correlation of 0.794
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(see equation 1IV.D.2). All of these plots show the yearly
and six month cycles much reduced in importance. They also
show some weak time-of-day effects, but these are more
noticeable in the 1955 data.

The correlation structure of the data is shown in Table
IV.E.1l. The average data correlations are now lower than
those of the average of the fifteen yearly correlations.

They also drop more quickly than that of the average of the
fifteen yearly correlations and eventually go below zero.
This is another indication that the trend in the average data
has been largely removed. Figures IV.E.6 and IV.E.7 show the
periodogram and log periodogram for the averaged data. As
has been noted previously, the time of day effects are more
noticeable in the averaged data than they are in the data

for a single year. However, the effects are prominent enough
to warrent further consideration. This subject will be ad-

dressed in Section IV.G.

F. RESIDUAL ANALYSIS

Since a first-order autoregressive model appears to be a
good fit to the innovation process {an}, we need to examine
this hypothesis more clearly. If we were deaiing with a

linear AR(l) model for the residual process
£ = pe + Y (IV.F.1)
where Yn is a sequence of iid random variables, then computing
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€n = PEL_q = Yn (IV.F.2)
as an estimate of Yn would be of interest. The estimated
{Yn} should have a flat spectrum. Using the Gamma generation

scheme of eguation II.A.5 (i.e., €e_ =B

n nfn-1 * C4G,) reduces

the value of differencing since the coefficients in the genera-
tion scheme, Bn and cn' are continuous random variables and
not constants. However, this differencing procedure may pro-~

duce some insight to the data. Hence, the differences

§n = g, - ;(l)en_l (IV.F.3)
were produced, where p is a one-step (lag one) correlation
for the two harmonic detrended data and e, and e _, are two
harmonic detrended data values.

Since the data has been detrended and the differencing
serves to remove the dependence from the data, one would expect
the periodogram of the detrended, difference data to be flat.
The periodogram and log periodogram for the detrended, dif-
- ferenced data are presented in Figures IV.F.l and IV.F.2.
With the exception of a relatively strong indication of a
six and twelve hour cycle, the periodogram is, in fact,
reasonably flat. The log periodogram indicates the same
characteristics.

The correlogram for the detrended, differenced data is Figure

IV.F.3. There are two key points. First, all the correlations
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are relatively low, indicating that the dependence structure
has been largely removed. Second, the alternation of the
sign of the correlations is an indication that there still
exists an important cyclic component in the data, in particu-
lar an alternation of twelve, or six hours. Differencing
two sine functions (i.e., sin(g%ﬂ) - sin(gﬂiﬁillo will pro-
duce a cycle with period of two if they have non-zero ampli-
tude. Therefore, the alternation of the correlations is

evidence that an important cycle still remains in the data.

G. A FURTHER REFINEMENT OF THE MEAN; THE LAST DETRENDING
Since the evidence of the preceding two sections suggests
that there is still one important cycle in the data, a further
refinement of the model for the mean was undertaken. The
evidence suggests that there may be six and twelve hour cycles
in the data. These cycles may be the result of the passage
of pressure fronts over the data collection location.
Only the exponential sine model for the mean was con-

sidered in the final detrending. The final model for the mean

was
i = EXP[a+b sin(zm) +b cos(z"n) +b sin(z"n)+b cos(-z—"n—)
n 1 2920 2 2920 2 1460 4 1460
+ b sin(313)4-b cos(312)4-b cos(zﬂﬂ)] (IV.G.1)

4 4 6 4 7 2 cee

One should note that the sine function with a period of two

is omitted from the model. This is because the sin (nm) is
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identically zero if n is an integer. The implication of this

is that we essentially lose the ability to determine the

— )

phase shift for the cycle with period two. This may mean
that our attempt to remove the six hour cycle will not be
completely successful. Parameters for the model in IV.G.l
were produced by the same techniques used previously (see
1 Section IV.C and Table IV.C.l).

Figures IV.G.l and 1IV.G.2 show the periodogram and log
periodogram for 1955 data after detrending using the model
of the mean in IV.G.l (see also Table IV.C.l). With the
exception of the six hour cycle, the periodogram compares
favorably with the theoretical AR(l) periodogram superimposed
over it. The log periodogram shows the same characteristics.
Similar information is presented for 1969 in Figures IV.G.3
and IV.G.4. The strength of the six hour cycle is reduced
for this year. Finally, the periodogram and log periodogram
for the averaged data are presented in Figures IV.G.5 and
IV.G.6. The comparison of the averaged data with a theoreti-
cal AR(l) process is considered acceptable,

Note too that in Table IV.G.l the 15 year average

correlation is commensurate with the correlation computed

from the averaged data. Thus the discrepancy between these
qguantities noted in Table IV.B.2 has been explained.

It may be worth noting in passing that a surprising result
' of this analysis is the failure to detect any multiple-day

cycles. Apparently some meteorologists believe that there
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is a six-day weather-cycle driven by the passage of storms.
This analysis has failed to detect any such cycle. It may
be that the high correlation among the data and the expecta-
tion that the actual storm cycle will be reflected in the
data has created an impression that these cvcles exist in
the data when, in fact, they do not. This confusion of
gquasi-cycles produced by high positive correlation and com-
pletely deterministic cycles is common in applied science.
Figure IV.G.7 shows a sample path for a GLAR(l) process with
high correlation, p(l) = 0.85. Although it may be tempting
to conclude that this process is showing evidence of a
cyclic nature, there is no deterministic cycle in the data
shown. The behavior displayed in this figure is typical of
an autoregressive process with high correlation, and no cycle.
A table of correlations for the 4 harmonic detrended
data is provided in Table IV.G.l. Its characteristics are

much the same as those of the two harmonic detrended data.

H. SUMMARY

The model suggested for the representation of the wind
speed data now has the following form. The basic structure
is that of a multiplicative model, that is it has the

forn

n=1,2,... . (IV.H.1)

347

- cerm o e




oo.c&w 60- mﬁﬁ 00°0St 00°scl 00" Qo_ oo.mh 00°0S

R ‘1114
uotr3ieraxxo) ybiy Y3rsa ssad0aq
w>ammwumouou=¢ ue jo musumz «OTTOAD 1Senyd, smouys yzeg ardureg L°9 AT TUNOII
Y3IGWNAN X3IANI
00- mm

o

58 °0 MGII Nyl
9°0=0 i

[l

__ ___

0" hi=
HlHd J 1dWES (1) HU 19

£8°1
3795 1dEA

0L"2
INTHA

Q9°e

0S°h




v ————

Table IV.G.l.

4 HARMONIC EXPONENTIAL SINE
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The {xn} sequence represents the raw wind speed data. The
Kn is a deterministic function of n. The innovative terms
{en} are modeled by a GLAR(l) process.

The GLAR(l) process was discussed and analyzed in Section
II.B. The generation scheme presented in equation II.B.l1l.1l

is repeated here (with € replacing Xi).

+ B G . (IV.H.2)

The innovative sequence {en} is itself correlated. The
parameters of the GLAR(l) process control the correlation
structure of the model. (See Section II.B.2, in particular
equation II.B.2.1.)
The mean Hn has been modeled as a four harmonic exponen-
tial sine function,
21n 2Tn

u, = EXPla+b sxn(2920)+b cos(——i-)+b sxn(—zg—)+b cos (17¢g!

+bssln(31§)+b cos(———)+b7cos(2%2

(IV.H.3)

The four harmonics represented are a yearly cycle (coeffi-
cients bl and bz), a six month cycle (coefficients b3 and
b4), a twelve hour cycle (coefficients b5 and bs) and a six
hour cycle (coefficient b7). The values for these parameters
and the "a" parameter are found in Table IV.C.l.

The innovative terms are modeled by the GLAR(1l) process.

The parameter values for k and g were determined to be 2.843
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and 0.727, respectively, by using the numerical approximation
to the maximum likelihood method described in Section II.B.4.
The data used for this evaluation were the residuals produced
by the single harmonic exponential sine model of the mean.
. . The parameters were not recomputed for the two or four har-
monic exponential sine model because of time limitations.
These parameter values give a correlation of 0.744. This
is somewhat less than the average correlation of 0.826 for
the single harmonic residuals (see Table IV.E.l). However,
this deviation is not considered serious. This is because
the estimates produced by the four harmonic detrended data

may differ from those produced by the two harmonic data and

the correlations for the one harmonic data are modified by
the presence of the six month, twelve hour and six hour cycles.
The simulation study of Section II.E indicated that for
large k and high correlation the standard deviation of the ﬂ
maximum likelihood estimates was about half that for the
moment estimates (see Figqure II,E.l1 and Table II.E.2). 1In
addition, neither estimation procedure had any apparent bias.
- For these reasons the maximum likelihood estimates are pre-
ferred over the moment estimates in this case unless com-

puter time is limited.
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